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1 Introduc on

1.1 Overview and mo va on

This report presents the results of our ‘Supervised Project’, carried out as part of the first year
of the Cognitive Science master (NLP track) at the Université de Lorraine, which was also
our first year in the Erasmus Mundus Joint Master’s Degree in Language and Communication
Technologies. The project, supervised by Maxime Amblard and Maria Boritchev, focused on
identifying and classifying question-answer pairs in dialogues. We had three main objectives:

1. Design a classification schema for questions and answers;
2. Write an annotation guide and use it to manually annotate several dialogues in different

languages;
3. Explore machine learning approaches to automate annotation.

Dialogues are at the heart of human communication, and it is hard to imagine a dialogue
without questions or answers. At the same time, questions, and their corresponding answers,
are a very complex topic, involving all levels of linguistic analysis, from phonology and syntax
to semantics and pragmatics. Questions and answers are also of considerable interest for the
field of NLP (Natural Language Processing), for example in tasks such as building automated
question answering systems and discourse modeling. Hence, a better understanding of ques-
tions and answers would not only help developing better theories of human language, but also
has many potential technological applications.
This project aims to contribute to this in two main ways: first of all, by designing our anno-

tation schema in a corpus-based way, we hope to get a more realistic sense of what types of
questions and answers are ‘out there’ and how they can be identified. Moreover, by writing an
annotation guide, and exploring methods to automate question and answer tagging, we provide
new practical tools for both language researchers and NLP engineers for producing annotated
corpora.

1.2 Research context

Our project was carried out in the context of two separate, but closely related lines of inquiry
that are currently being pursued by the Sémagramme group at Loria:1 dynamic discourse mod-
eling, and the project Schizophrénie et Langage: Analyse et Modélisation (SLAM, ‘Schizophrenia
and Language: Analysis and Modeling’). Dynamic discourse modeling analyzes dialogues in
terms of representations of the information in the discourse that are updated as new utterances
are added. Theories of this kind were first developed in the 1980s (see the introduction section
of [4] for a brief historical overview); a modern approach developed at Loria is Type-Theoretic
Dynamic Logic (TTDL) [10]. Meanwhile, the SLAM project investigates the language and dis-
course of patients with schizophrenia [1, 26]. Conversations of people with schizophrenia are
(or appear to be) characterized by many semantic and pragmatic inconsistencies. [26] and later
1Loria (Laboratoire Lorrain de Recherche en Informatique et ses Applications) is a research institute located in Nancy,
France. See www.loria.fr and http://www.loria.fr/en/research/teams/semagramme/.

4

www.loria.fr
http://www.loria.fr/en/research/teams/semagramme/


work (see [34, 4]) have tried to analyze such inconsistencies in terms of dynamic frameworks
such as TTDL.
Our work aims to contribute to these projects in two ways. First, our manual annotation work

and automatic classification models for questions and answers could be used as a preprocessing
step for automatic dialogue modeling systems: our annotations can give such a system a global
idea of where the questions and answers in the dialogue are, and what kind of information these
questions and answers contribute to the discourse. The dialogue modeling system can then
further process this information to identify the precise semantic and pragmatic contribution
and relate it to previous information. Second, by providing a way to analyze questions and
answers in unimpaired (‘normal’) speech, we create a baseline for further investigations into
how the questions and answers of patients with schizophrenia (or other forms of impaired or
‘abnormal’ language) might differ from this.

1.3 Report structure

The remainder of this report is divided into three main parts, each one corresponding to one of
the objectives listed in section 1.1, followed by a general conclusion. The first part, chapter 2,
begins by describing and motivating our annotation schema. Next, in chapter 3, we describe
how we experimented with applying this schema to data from various corpora and with writ-
ing an annotation guide for describing this process as explicitly as possible. In section 3.1, we
describe the experiments themselves, and in section 3.2, we analyze and evaluate our results.
We also describe how we have used this evaluation to improve our annotation guide and es-
tablish a definitive version of our ‘golden standard’ corpus, for use in our machine learning
experiments.
The third main part of our report (chapter 4) describes our experiments with trying to au-

tomate the annotation process using different types of machine learning techniques. First, in
section 4.1, we define and motivate the annotation task as a classification problem, before
introducing experiments using two different types of approaches—traditional statistical tech-
niques, and more modern neural network approaches—for solving this problem. After this, in
section 4.2, we present and evaluate the results of these experiments.
Finally, in chapter 5, we look back on our project as a whole, summarize our findings, and

sketch how our work could serve as a basis for future research.
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2 Annota on schema

In this section, we present our schema for classifying question-and-answer pairs. First, in sec-
tion 2.1, we provide a global overview of the schema: we explain the general philosophy
behind it. Then, in section 2.2, we briefly describe and define the schema and the tags used
in it. As previously mentioned, one purpose of this study is to write an annotation guide. The
annotation guide contains examples and usage of our schema; the reader is referred to it for
more information (appendix C).

2.1 Annota on overview

The main objective of our schema is to provide a way of classifying question-and-answer pairs
that is useful for discourse modeling. Furthermore, it should find a balance between doing
justice to the complexity of the data and the simplicity to be used by both humans and machines
in a consistent way. This has a number of consequences for both the linguistic nature and the
level of detail of the classification.
First of all, in order to be useful for discourse modeling, the schema should take into account

not just the form of questions and answers, but also their semantics and pragmatics. At the same
time, given that semantic and pragmatic features are harder to rigorously define, cues from
syntax (and to a lesser extent, prosody), need to be used wherever possible. This means that
each of the categories used in our schema is necessarily a combination of syntactic, pragmatic,
and semantic features. Moreover, for the purpose of discourse modeling, the schema should
ideally be as fine-grained as possible and indicate not only the exact location and span of a
question or answer, but also precisely define how it contributes to the discourse. However, a
schema with a very high level of detail would imply a considerable time investment for human
annotators and requires a more complex annotation structure, which increases the likelihood
of mistakes and also makes it harder to apply machine learning approaches. Our schema tries
to define the span and discourse contribution of questions and answers as precise as possible
while limiting itself to criteria that both human annotators and machine learning algorithms
should, at least in principle, be able to consistently apply.
For designing the schema, we used a corpus-driven approach wherever possible. In more

practical terms, this means that we started with minimal assumptions about the questions and
answers present in the corpora that we have annotated (see section 3.1.3 for information about
these corpora), and then simply began annotating the corpora, revising and expanding our
schema as many times as necessary along the way. Also, most of the examples presented in
the following sections belong to the Saarbrücken Corpus of Spoken English (SCoSE) which we
used for our study (see 3.1.3).

Ques ons

For designing our classification scheme for questions, we started with the assumption that
the corpora would contain at least two well-known and well-defined categories of questions:
yes/no questions and wh-questions [14]. In our opinion, both of these types are useful a priori,
because they are each associated with a clear set of syntactic, semantic and pragmatic char-
acteristics. Prototypically, in English, a yes/no question is characterized by subject-auxiliary
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inversion and do-support (syntax), expresses a proposition that could be true or false (seman-
tics), and its answer is expected to either confirm or deny this proposition (pragmatics). On
the other hand, a prototypical English wh-question contains a fronted constituent that starts
with a wh-word (syntax), expresses a proposition with missing information (semantics), and
expects the answerer to supply this missing information (pragmatics) [14].
Starting from this assumption, we looked for questions in our corpora that did not correspond

to either of the two prototypes and tried to extend our schema accordingly. We found that the
questions that did not have the prototypical characteristics of either a yes/no-question or a wh-
question diverged from those prototypes in one of several ways. First of all, there are questions
whose syntactic form does not correspond to that of either prototype. This group of questions
includes shortened questions that consist only of a single word (1) or a single syntactic phrase
(2), and also yes/no questions that lack subject-auxiliary inversion (3) or wh-questions whose
wh-constituent is not fronted (‘wh-in-situ’ questions) (4). Since the semantics and pragmatics of
this type of ‘deviant’ questions is very similar to those of prototypical yes/no and wh-questions,
we decided to add no new categories for it. Although this decision helps to keep the schema
simple, it has the disadvantage of making the two original categories, yes/no questions and
wh-questions, somewhat less straightforward to define.

(1) Go? (SCoSE/Amy, 208)
(2) What for? (SCoSE/Amy, 495)
(3) So you’re gonna be home then? (SCoSE/Amy, 33)
(4) Some other stuff like what? (SCoSE/Amy, 2914)
A second group of questions has the syntactic characteristics of a yes/no question or a wh-

question, but whose pragmatics and/or semantics is different. For example, in a question like
(13), the asker of the question suggests a way to complete the utterance of the previous speaker,
and the expected answer would confirm or deny this suggestion. This is subtly different from a
prototypical yes/no question because the asker of the question does not so much ask their in-
terlocutor to confirm the truth value of the suggestion, but rather if the suggestion corresponds
to what the previous speaker intended to say. For the purpose of discourse modeling, it might
be useful to classify this kind of question as a separate type.

(5) A: And Amanda ...
B: Making an evening of it? (SCoSE/Amy, 23-24)

Other questions with a divergent pragmatics prompted a more fundamental revision of the
classification scheme:

(6) Yeah, do you really? (SCoSE/Amy, 217)
(7) Who wants to work? (SCoSE/Amy, 3427)
These questions appear to be a yes/no question or a wh-question, respectively, but their

context and intonation makes clear that the person who asks them is not actually interested
in the confirmation or denial of the proposition (6), or in the set of people who would like
to work (7). Instead, such questions can have various so-called phatic functions. The term
‘phatic’ was coined in the early 20th century by the anthropologist Bronisław Malinowski, who
used it to refer to speech that is not ‘used primarily to convey meaning, the meaning which is
symbolically theirs’ but that ‘fulfil[ls] a social function’ and is an ‘act serving the direct aim of
binding hearer to speaker by a tie of some social sentiment or other’ [17, pp. 314-316] (cited
in [30]). In the context of question classification, [14] defines ‘phatic information’ questions
as questions that enable ‘the speaker to check that the hearer is following the information
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exchange in the conversation and/or is aware of the relevant background information’. In our
classification schema, phatic questions have a slightly broader meaning; the category includes
any question that is used by the speaker to indicate that they are still paying attention, to
express surprise, or in a rhetorical way.
Finally, there are questions that are semantically and pragmatically similar to wh-questions,

but are syntactically closer to yes/no questions:
(8) Is it a guy or a girl? (SCoSE/Amy, 2296)
This kind of question, like yes/no questions exhibits subject-auxiliary inversion, but does not

ask for the confirmation or denial of the proposition that it expresses.1 Instead, it expects the
answerer to provide somemissing information, just like a wh-question (the equivalent would be
something like ‘what gender has this person?’), with the only difference that the set of options
to choose from is made explicit in the question.
The existence of questions with either a form or a function (but not both) that corresponds

to that of a yes/no question or of a wh-question led us to split up our question schema into two
dimensions: ‘form’ and ‘function’. In this way, we can do justice to the facts that questions like
(13) or (6) have the same form as a yes/no question but have a different, specific function, and
that (8) is functionally similar to a wh-question even though its form is different.

2.1.1 Features

In order to annotate the semantic contribution of wh-questions and disjunctive questions (and
their corresponding answers) in a more precise and more useful way, our annotation schema
does not only categorize the type of the question itself, but also that of the missing information
that the question asks about. More formally speaking, the ‘missing information’ in a question
has a particular semantic role. In the framework developed in Maria Boritchev’s thesis [4],
these semantic roles (called ‘features’) are an important part of the representation of the situ-
ation (‘frame’) that is denoted by the discourse. In order to be compatible with her work, we
use the same terminology and also the same feature set (see the ‘Features’ paragraph in section
2.2) as in Boritchev’s framework.

2.1.2 Complexity and reported speech

There are two other phenomena that we believe are important to include in our annotation
schema. The first of these concerns the complexity of questions: in some cases, a single utter-
ance asks two questions at the same time; in such cases it is important to mark in our annota-
tions that these questions are related. Secondly, discourse sometimes includes quoted speech
(the discourse participants are repeating someone else’s words); for the purpose of discourse
modeling, questions that are part of such quoted speech have a different status than ‘normal’
questions, since they are effectively part of a different discourse. Hence, it is import to mark
whether or not a question is quoted this also apply to quoted answers.

2.1.3 Answers

For constructing a classification schema for answers, we used the question types that we de-
fined as a basis, and then examined what groups of answers were associated with each question
type. We started by finding prototypical answer types and then revised the schema based on

1Of course, it is possible to interpret questions containing a disjunction in this way (‘is it the case that this person
is either a boy or a girl?’), but in this case this is obviously not the intended interpretation.
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deviant answers that were found in the corpora. For example, an answer to a yes/no ques-
tion prototypically either confirms or denies the proposition contained in the question, and
an answer to a wh-question prototypically provides the missing information expressed by the
wh-constituent in the question.
Again, non-prototypical cases can be divided into several categories. First of all, there are

answers expressing uncertainty:
(9) Uhm, I don’t even know for sure. (SCoSE/Amy, 1265)
A more interesting type of answer denies the presuppositions (assumptions) that are implicit

in the question:
(10) A: What are your plans now?

B: I don’t have any plans. (SCoSE/Amy, 241-242)
A different type of answer expresses information that, at least at first sight, is not at all related

to the information that the question asked for:
(11) A: When will you guys get off?

B: My last exam is like ... I don’t know. (SCoSE/Amy, 243-244)
Finally, there are answers with little to no semantic content and have a phatic function:
(12) A: You know?

B: Oh yeah. (SCoSE/Amy, 900-901)
Our final schema defines a separate answer type for each of these categories of deviant

answers.

2.2 Tag descrip ons

Based on the previous explanation of the different forms and functions and the way that we
defined our categories to annotate, we defined a tag set for annotation of each of the previously
explained phenomena. A major part of the annotation guide is dedicated to defining this tag
set more precisely. In this section we will only provide a brief definition of each tag. Please
see the annotation guide (appendix C) for more information.

2.2.1 Ques on types

In this section we list all of the tags that we used to annotate the different types of questions,
based on the classification of questions based on form and function (see section 2.1). Table
2.1 summarizes the type of questions according to their form and function and the tags we
assigned for each type.

2.2.2 Features

As previously mentioned, both wh-questions and disjunction questions express a proposition
with missing information which has a particular semantic role and the expected answer should
contain a constituent with the same role. For example, in ‘When did you leave the party?’,
the wh-phrase ‘when’ denotes the time when the addressee left the party, and an appropriate
answer to this question (e.g. ‘around midnight’) should also have this semantics. As we said
earlier we adopted the list of features used by [4] in our work. The list of tags for each feature
is given in table 2.2.
Table 2.3 shows the corresponding semantic role for each wh-word. Among these words,

what and which are followed by a phrase which can ask for any one of the features.
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Tag Name Form Function
YN Yes/no question Inversion, do-support Asks for the truth value of a

proposition
WH Wh-question Wh-constituent, fronting Asks for a feature (see feature

table)
DQ Disjunctive question Contains a disjunction (“or”) Asks for a feature (see feature

table)
PQ Phatic question Any form Phatic function
CS Completion suggestion Any form Complete the previous

speaker’s utterance

Table 2.1: Question tags

Tag Name
TMP Temporality
LOC Location
AG Agent
TH Theme
OW Owner
RE Reason
CH Characteristic

Table 2.2: Features

Wh- word Features
What + focus phrase Feature
When Temporality
Where Location
Who Agent
Whom Theme
Which + focus phrase Feature
Whose Owner
Why Reason
How Characteristic

Table 2.3: Feature pairs

2.2.3 Complexity and reported speech

In our work, there is other information about question and answers that is worth annotating.
The first one is when a question or answer is reported speech. For consistency reasons, the tag
set for this category (QQ, NQ) is applied to both questions and answers. Another interesting
phenomenon is when a single utterance contains two or more questions. To distinguish such
utterances from utterances containing a single question, we introduced two further tags. The
list of these tags is in table 2.4

2.2.4 Answers

In a conversation, usually, a question is followed by an answer. It can be intuitively observed
that some type of questions restrict the type of answers they require. For defining every type
of answer, as our corpus-based approach dictates, we looked for question types and its corre-
sponding answer. Accordingly, we specified the following tags for the answer types.The table
2.5 summarizes the types of answers.
It should be noted that unrelated topic (UT) is different from not assigning a tag to an ut-

terance. An unrelated topic is an indirect way of answering a question. There may be some
logical or discourse related relation between the question and answer, and this differ from a
statement that is completely unrelated to a question. Among these types of answers, there may
be overlaps. For example, a ‘deny the assumption’ answer can be thought of as a negative
answer because it is possible that they share the same grammatical and semantic structure.
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Different factors including the context and prosody are relevant to decide overlapping tags.

Tags Name
NQ Non-quoted Question
QQ Quoted Question
SQ Single Question
MQ Multiple Question

Table 2.4: Other tags

Tags Name Question Type
PA Positive Answer YN, CS
NA Negative Answer YN, CS
FA Feature Answer DA, WH
PHA Phatic Answer YN, CS, DQ, WH, PQ
UA Uncertainty Answers YN, CS, DQ, WH, PQ
UT Unrelated Topic YN, CS, DQ, WH, PQ
DA Deny the Assumption YN, CS, DQ, WH, PQ

Table 2.5: Answers
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3 Annota ons

3.1 Annota on experiments

Having defined the annotation schema described in the previous section, we have experimented
with applying the schema on real-world data. Our experiment consists of two parts: annotating
(parts of) several conversational corpora in different languages, and writing an annotation
guide to explicitly define the annotation process for ourselves and future annotators. In this
section, we give an overview of these experiments: first, in 3.1.1 we explain what software we
used; in section 3.1.2 we describe our annotation guide; finally, in section 3.1.3, we explain
which corpora we used for our experiments.

3.1.1 So ware

The software that we used for annotating our corpora is ELAN [19]. The main advantage of
ELAN is that it can read and convert the original formats of the corpora (CLAN in the case of
the SCoSE corpora, and Praat TextGrids in the case of the CGN corpus). Another advantage
is that it allows the annotator to create several layers (or ‘tiers’) of annotations. In this way,
each fragment of the corpus that we would like to annotate can be aligned with a question type
tag, a feature tag, etc. This multi-layer approach also enables assigning a single annotation to
multiple fragments of the corpus (for example if a question is spread over several utterances)
or tagging only part of an utterance.
An important characteristic of ELAN is that it is primarily intended to annotate video and/or

audio files. For our purposes, this is both an advantage and a disadvantage. On the one
hand, in ELAN it is possible to view and edit the transcriptions and the original audio of the
corpora at the same time. This makes it easier to check, for example, the prosody of a given
sentence, which is sometimes vital for assigning the appropriate question type tag to it. On the
other hand, however, ELAN’s focus on media files makes it harder to export our final product
and prepare it for automatic evaluation and machine learning. For our final product, we are
primarily interested in the text of each questions or answer, together with the annotations we
assigned to them (type, complexity, etc.); references to the original media files are less relevant
at this point. However, ELAN’s XML-representation of the annotations is tightly linked to these
media files, and defines transcriptions and annotations only in a temporal way (i.e. for each
transcription or annotation it records its starting and ending time in the original media file),
not in a logical way (i.e. in terms of relationships between annotations on different layers).
This means that they are harder to read and require some post-processing to extract the text
of the questions and answers that were annotated and connect these text fragments to the
corresponding annotations.1
In order to do this post-processing (which, at the same time, is also a preprocessing step for

the agreement evaluation and machine learning algorithms), we have developed a script that
reads the ELAN files of the annotated corpora, finds the time spans of all text fragments of the
original transcriptions as well as of all annotations, tries to link these together, and outputs the
results in a structured (JSON) format that connects transcriptions and annotations in a logical,
1This problem might have been partially avoided by ordering tiers hierarchically; however, doing so would also
have made the annotation work more complex and time-consuming than it was under our current approach.
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rather than a temporal way. Although this is mostly straightforward, one problem is that in
many cases, there is a temporal overlap between a question and its answer. If this overlap is
too large, it is difficult for the post-processing algorithm to decide to which utterance a given
annotation should be connected. In this case, the script adds a special flag in the output file
which signals that manual correction might be needed.

3.1.2 Annota on guide

Objec ves

This project is the beginning of an initiative to annotate natural language dialogues. One of
our aims is to provide future researchers working on this kind of data with a concise, clear and
precise guideline for the annotation of question and answers. For this purpose, we wrote an
annotation guide (see appendix C) to guide annotators with details, examples and instructions
for how to use the software, so that someone who has little theoretical background in this
particular field can use it and produce reliable annotations. At the end of our annotation
guide, we also included a ‘troubleshooting’ section. The aim of this part is to address some of
the possible problems that an annotator may encounter in the process of annotation.

Tag defini ons

A major part of the annotation guide is dedicated to defining the tag set, particularly the
question types. For each question type some prototypical examples were provided and the
tags that should be used were defined as well. Where necessary, we also added information
about ‘edge cases’ to warn annotators about questions or answers that might be ambiguous
between two categories, and how to categorize these.

Annota on procedure

Another important part of the annotation guide describes the annotation procedure. The an-
notation procedure guides the annotator in identifying questions and answers, dealing with
transcription errors, determining question and answer types, and adding tags for additional
information such as features, complexity, and indirectness. We have tried to write this proce-
dure in a way that is as ‘algorithmic’ as possible, by making the sequence of steps that should
be followed very explicit. This has two main advantages: it reduces the risk of mistakes on
the part of human annotators, and it makes it easier to adapt the annotation guide for use in
automated tagging algorithms.
As was described in 2.1, there are shared forms between different types of questions. This can

sometimes make it hard for an annotator to classify the questions correctly, so it is important
to have a guideline for what to do in case of doubt. For this purpose, we defined a precedence
order from the most general to the most specific type of question. That is, from questions with
easily identifiable characteristics, such as wh-questions which contain a wh-phrase, to those
that can have different forms as it is the case for the phatic questions. The following list is the
precedence order we used in our schema:

1. Wh-questions
2. Disjunctive question
3. Yes/No questions
4. Completion suggestion
5. Phatic questions

13



3.1.3 Annotated corpora

The corpora that we annotated can be divided into two sections: an English-language ‘golden
standard’ corpus, and three ‘experimental’ corpora (in Spanish, Dutch, and English). Annota-
tion of the golden standard corpus was a joint effort; each of the three members of our group
annotated around a quarter of the corpus individually, and the remaining part was annotated
by all three members and used for analyzing inter-annotator agreement (see section 3.2.2).
The experimental corpora were divided between the three members; the purpose of annotating
these corpora was to test our classification schema on languages other than English (for the
Dutch and Spanish corpora) and also to produce more English data for use in our machine-
learning experiments (see chapter 4).

Selec on criteria

Our work focuses on annotating questions and answers in natural, spoken conversation. The
SLAM project [1] and related projects, in the context of which we completed our study, are
primarily interested in discourse that is in some way atypical, such that of patients with
schizophrenia and that of young children. However, for the present study, we decided to focus
on discourse of unimpaired adults, so that we can get an impression of how well our schema
works before applying it to more difficult datasets.
Hence, when selecting corpora for use in our study, we used the following criteria:

• The data should be natural discourse (i.e. spontaneous, rather than elicited, conversa-
tions);

• The participants in the discourse should be unimpaired, adult speakers;
• There should be transcriptions available in a uniform format (so that the same annotation
tools could be used for all of the data).

Corpora descrip on

Based on these criteria, we decided to use the following corpora:

• SCoSE (Saarbrücken Corpus of Spoken English) The SCoSE project [12] is a corpus
of spoken English compiled at Saarland University. It is part of the CABank section of
TalkBank project. TalkBank is a collection of corpora in different languages that can
be used for various kinds of communication research. SCoSE (Part 1) contains several
corpora for use in conversational analysis (CA).
SCoSE Part 1 is approximately 45000 words2 and consists of several transcriptions of
conversations between college students in Illinois (US) that took place in an informal
setting. We annotated the following conversations in this part of the corpus:
1. The conversation “Amy” (~25000 words) was used as the ‘golden standard’ corpus;
2. The conversation “Mary” (~11000 words) was used as part of our ‘experimental’

corpus, and as a test dataset for our machine learning experiments.
• CallFriend The CallFriend corpus [5] is, like SCoSE, part of the CABank. The corpus was
originally compiled for use in the development of language identification technologies.
The project was primarily led by the Linguistic Data Consortium. Each of the participants

2All word counts listed here were obtained using the Unix command line tool wc.
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in the corpus got a free call of 30 minutes and were allowed to talk to anyone they wanted,
usually a relative or a close friend, and speak about any topic.
The conversation transcriptions that we annotated (as part of our ‘experimental’ corpus)
are “2034h”, “2128h”, and “4053h” (around 20000 words in total). The participants in
these conversation are people from Colombia.

• Corpus Gesproken Nederlands (CGN) The CGN [21] is a joint project of the Dutch
and Flemish governments. It was first published in 2004 and consists of 800 hours of
recordings of spoken Dutch. The corpus contains various kinds of spoken language; the
conversation transcriptions that we used for our annotations come from the section of
the CGN that contains spontaneous phone conversations.
As part of our ‘experimental’ corpus, we annotated three conversations from this corpus,
all of them between people in their 20s and 30s: “fn008000”, “fn008001”, and “fn008003”
(around 7000 words in total).

3.2 Annota on results and evalua on

After annotating the ‘golden’ and ‘experimental’ corpora described in the previous section, we
analyzed and evaluated our own work. In this section we present this analysis: first, in 3.2.1 we
present some descriptive statistics that give a general overview of our annotation work. Then,
in 3.2.2, we analyze inter-annotator agreement of our annotations on our ‘golden’ corpus; in
3.2.3, we summarize our qualitative analysis of the disagreements that were found, and explain
how we used this analysis to establish a definitive version the ‘golden standard’ and to improve
the annotation guide. Finally, in 3.2.4 we briefly discuss the language-specific issues that arose
during annotation of the two non-English corpora.

3.2.1 Descrip ve sta s cs

A general overview of our annotation work is given in Table 3.1. It shows at least two inter-
esting patterns. First of all, we see that the question/non-question ratio is similar in all of the
three corpora: about 5-10% of the lines that we annotated was tagged as a question. Further-
more, we also see that, in every corpus, there are more questions than answers (which is a
logical consequence of the fact that every answer needs to be preceded by a question, but that
not every question is actually answered), and that the number of questions that is answered
varies between a little over 60% (Dutch) and more than 80% (Spanish).
Tables 3.2-3.4 and figures 3.1-3.6 show the distribution of each tag in our annotation schema,

grouped by language. There are some differences between the languages, but in most cases,
the global pictures are quite similar. For example, for question types (table 3.2, figure 3.1), the
most common tag in each language is YN (yes/no question), followed by WH (wh-question)
or PQ (phatic question). However, exactly how prevalent YN is depends on the language: in
the Dutch corpus, it accounts for almost 60% of the questions, while in Spanish and English
corpora this is about 40%.
In the distribution of answer types (table 3.3, figure 3.2), there are several obvious patterns:

for example, the Spanish and Dutch corpora have a much larger percentage of FA (feature
answer) tags than the English one; this difference is caused by the larger number of WH-
questions in these two languages. Something that is shared between all the three corpora is
that in all cases, there are far more positive answers than negative answers. Interestingly,
however, this difference is much larger in the Dutch corpus than in the other languages.
For feature types (table 3.4, figure 3.3), an interesting pattern is that in all the corpora, TH

(theme) is by far the most common tag. One possible contribution is that in the cases that the
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Corpus Language No. Lines No. Questions No. Answers
Amy English 3580 238 183
Mary English 1383 184 106
Total (English) English 4963 422 289
fn008000 Dutch 204 28 24
fn008001 Dutch 338 33 29
fn008003 Dutch 393 26 19
Total (Dutch) Dutch 935 87 72
2034h Spanish 921 51 35
2128h Spanish 937 73 57
4053h Spanish 790 68 30
Total (Spanish) Spanish 2648 192 122

Table 3.1: Summary of the annotation experiments

feature tag is not clear, we specified in the annotation guide to use TH as the default value. It
is also interesting that some of the other feature tags never occur in some corpora; however, it
is impossible to draw any conclusions from this because the corpus size is quite small.
Finally, when it comes to the distribution of complex answers and of quoted questions and

answers, the situation is almost identical for all corpora. Both quoted questions and answers
(see figures 3.5 and 3.6), as well as complex questions (see figure 3.4), are very rare.

CS DQ PQ WH YN
Spanish 0.010638 0.015957 0.244681 0.329787 0.398936
Dutch 0 0.011494 0.080460 0.264368 0.643678
English 0.016588 0.011848 0.315166 0.234597 0.421801

Table 3.2: Distribution of question types

DA FA NA PA PHA UA UT
Spanish 0.017699 0.309735 0.132743 0.371681 0.061947 0.079646 0.026549
Dutch 0.013889 0.250000 0.013889 0.472222 0.083333 0.069444 0.097222
English 0.006920 0.155709 0.128028 0.245675 0.256055 0.051903 0.155709

Table 3.3: Distribution of answer types

AG CH LOC RE TH TMP OW
Spanish 0.062500 0.093750 0.015625 0.125000 0.625000 0.078125 0
Dutch 0 0.120000 0.120000 0.040000 0.720000 0 0
English 0.067308 0.144231 0.096154 0.076923 0.528846 0.067308 0.019231

Table 3.4: Distribution of features
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Figure 3.1: Distribution of question types
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Figure 3.2: Distribution of answer types
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Figure 3.3: Distribution of features
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Figure 3.4: Distribution of question complex-
ity. Multiple Questions (MQ):
Spanish 2.7%, Dutch 4.7%, English
0.4%
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Figure 3.5: Distribution of quoted questions.
Quoted Questions (QQ): Spanish
4.8%, Dutch 1.1%, English 5.7%
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Figure 3.6: Distribution of quoted answers.
Quoted Answers (QQ): Spanish
2.7%, Dutch 1.4%, English 2.8%
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3.2.2 Agreement analysis

To evaluate the quality of the annotation guide and the annotations themselves we calculated
the inter-annotator agreement of the golden corpus for the shared parts (those annotated by all
annotators). The analysis of inter-annotator agreement can give insights into the clarity of the
defined procedure and the capacity of the schema to cover the different phenomena occurring
in naturally spoken interactions [2]. If the annotators agree in almost all the utterances, then
the procedure was understandable and clear enough to lead the annotations. However, if
the annotators disagree on items belonging to the same category, this might indicate that the
category does not represent well enough the studied phenomena.
In this section, we will present the different metrics used to calculate the inter-annotation

agreement, the scores obtained and the interpretation of those values.

K, S and Π coefficients

Cohen’s Kappa (K) [8], the S coefficient [3] and the Π coefficient [29] are the most common
inter-annotator agreement measures [2]. These metrics allow us to measure the reliability
of the annotations made to obtain the final version of the golden standard. They all use the
concept of observed agreement which corresponds to the ratio of the annotations in which
the annotators agree over the total of tagged utterances and the concept of chance, in which
case there exists the possibility that the agreement was due to chance. It is in the definition of
chance where all the three coefficients vary.
To determine the value of the scores, all of them use the formula given in 3.1. In this formula,

Ao corresponds to the observed agreement, andAe corresponds to the expected agreement. The
value for Ae depends on the score that is calculated; this value is the interpretation of what
conditions are considered by chance which we explained before are different for each metric.
The value will be 0 if the observed agreement is the same as the expected agreement Ao −Ae.

K, S,Π =
Ao −Ae

1−Ae
(3.1)

The assumptions that each score relies on for calculating Ae correspond to different ideas
about the type of distribution that we would obtain if all the annotators would tag completely
randomly. For S, the assumption is that the distribution would be uniform, in the case of Π
the assumption is that we will obtain the same distribution for each annotator and in K the
assumption presumes that each annotator follows a different distribution [2].
Although the three coefficients are ratios, in the case of K the interpretation of the values

obtained has been a source of controversy as explained in [20]. The scale of what is considered
a reliable kappa value is different in different studies: for instance, 0.6 (moderate) and 0.8
(substantial) [16] and 0.67 (highly tentative and cautious) [15]. Consequently, It is appropriate
to do an analysis which includes the three metrics and also the nature of the data.

Metrics of the golden standard corpus

Once we annotated the shared part of the golden standard, we extracted those annotations and
proceeded with the inter-annotator agreement analysis. To do so, we implemented a script
capable of doing the alignment of the annotation based on the time and text annotated and
calculating the metrics for more than two annotators (in our case three annotators).
The alignment of the annotations represented a challenge because it needs to rely on the time

order of annotations in the JSON input file (output of the post-processing step of obtaining the
annotations, see section 3.1.1). Sometimes, two annotators tagged the same utterance but
assigned slightly different time values to it. Because the alignment is based on time order,
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such annotations will be counted as different from each other even though they correspond to
the same text. For this reason, we needed a more flexible approach in which we tolerate some
small differences in time with the same text. That way, we could distinguish if two annotations
belong to the same utterance or not. Another typical case is when at least one of the annotators
did not tag the utterance, but the other did. For this case, we needed to add a new category
(besides the tags defined in section 2.2) that could represent this situation (the empty tag). It
was also a challenge to align more than two annotators and create a general procedure capable
of analyzing any number of annotators.
The first time that we calculated the metrics, we identified some typographical and location

errors (i.e., the tag was in the wrong layer), which affected the calculations but were errors
that could have easily been avoided. The results for after the correction of those errors are
shown in table 3.5. The inter-annotator agreement was calculated pairwise and also, for all of
the annotators together.
In general in the table 3.5 we can see that annotator B and annotator C have a higher Ao than

the pairwise with annotator A. Since that corresponds to the average of the pairwise scores, it
affects the score for all the annotators. It should be noted that this annotation task is a complex
one compared to other similar annotation tasks like POS-tagging, as there are different factors,
such as semantics, syntax, prosody and span of question and answers play role in determining
the required tag. As a result, it is unsurprising to obtain Kappa scores below 0.7 considering
the complexity of the task.
In the case of complexity and is_quoted layers, we can see the observed agreement was

substantial but the values for the κ, S, and Π metrics were considerably low. One reason for
this could be that the number of possible classes for those layers is low, specifically, three tags
(two tags from the schema and the empty tag). That makes that the expected agreement Ae is
high, which can lead to interpretation of agreement as by chance. Furthermore, in the case of
complexity, there were no occurrences of multiple questions (MQ) in the part that we chose for
calculation of inter-annotator agreement, and therefore the only tag that could be used in the
computation was single question (SQ) and as a result, the disagreement relies on the utterances
that were not tagged (the empty tag). Because of these cases, it is crucial to support the analysis
with several metrics and take into account the nature of the data.
The agreement values obtained for the layer question_type were over 0.6 (for all annotators

combined). This result corresponds to a moderate agreement which in turn suggests the anno-
tation guide was clear to lead the annotators to choose the right annotations, but at the same
time, it suggests that there was a need for improvement which we identified those points and
addressed. We explain those improvements in the next section. These values give an insight
into the coverage of the scheme. Moreover, there were exceptional cases in which it was dif-
ficult to decide which class a question belongs to, but in general, the schema was sufficient to
tag all the found questions in the golden standard.
The case of answer types is different because the schema establishes a correlation between

the type of a question and the possible types for the answer to that question. Therefore, when
there was disagreement in the question type, the probability of disagreement with the answer
type increases and this can be seen in the table 3.5. The figures 3.7 and 3.8 show the values
for K and the Ao for questions and answers type respectively.
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Layer All A and B B and C A and C
Avg Ao K Π S Ao K Π S Ao K Π S Ao K Π S

question_type 0.73 0.63 0.63 0.69 0.73 0.62 0.62 0.67 0.7 0.59 0.59 0.66 0.73 0.62 0.62 0.69
answer_type 0.59 0.49 0.48 0.54 0.68 0.6 0.6 0.64 0.54 0.42 0.42 0.47 0.48 0.35 0.35 0.42
feature 0.9 0.67 0.67 0.88 0.92 0.74 0.74 0.9 0.89 0.64 0.64 0.87 0.89 0.61 0.61 0.86
is_quoted 0.78 0.35 0.35 0.67 0.81 0.3 0.3 0.72 0.76 0.15 0.15 0.63 0.73 0.14 0.14 0.6
complexity 0.86 0.38 0.38 0.71 0.84 -0.09 -0.09 0.68 0.84 0.2 0.2 0.68 0.87 0.26 0.26 0.74

Table 3.5: Inter-annotation agreement scores

Figure 3.7: K and Ao scores for questions type Figure 3.8: K and Ao scores for answers type
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3.2.3 Qualita ve analysis and golden standard

After computing inter-annotator agreement scores for the common part of the ‘golden’ corpus,
we performed a qualitative analysis of our disagreements. For each annotation for which there
was disagreement, either about the span of the annotation or about one or more tags, we
followed the following steps:

1. Identify the cause of the disagreement;
2. Decide what the definitive annotation should be;
3. Where possible, improve the annotation guide.
In most cases, identifying the cause of disagreement was easy. Most disagreements fell into

one of four categories:
• one (or more) of the annotators made a simple mistake;
• there was an earlier disagreement that caused more disagreements;
• the annotation guide did not take a particular situation into account;
• there was a genuinely complicated problem for which it is hard to find a general solution.

Examples of simples mistakes are cases where one of the annotators overlooked a question,
or where they forgot to add a particular tag (e.g. they forgot to add a feature tag for a wh-
question). In such cases, it was generally obvious what the cause of the disagreement was and
how it should be resolved, but it is less obvious in what way the annotation guide could be
improved to prevent this kind of problem, other than to add an extra warning for annotators
that it is important to check that an annotation is actually complete before moving on to the
next one. A more sophisticated solution to prevent these kinds of mistakes would be to use
a software that checks the structure and format of annotations. Something like this does not
seem to be possible in ELAN, but other methods (such as using custom XML documents and
schema validation) would have allowed us to do this.
Other disagreements were not mistakes in themselves but rather they were the logical con-

sequence of previous disagreements. For example, suppose that one annotator has tagged a
particular question with the type YN (yes/no), whereas the other two annotators believe that
it is a PQ (phatic question), and suppose that the answer to this question is ‘yeah’. In such a
case, the first annotator would likely interpret this answer as confirming the proposition that
was contained in the putative yes/no question and tag it as a PA (positive answer); the other
annotators, on the other hand, do not have this option (since positive answers are only possible
for answers to certain types of questions) and will tag it as PHA (phatic answer). Such cases
could be easily resolved after the original problem was addressed.
The third type of disagreement originated from gaps in the annotation guide. In the absence

of guidance about what to do in a particular situation, the annotators often proceeded in dif-
ferent ways. For example, the original annotation guide did not explicitly specify whether or
not it is allowed to tag only a part of a question or answer or whether an annotation should
always corresponds to a complete utterance. This led some annotators to tag only a part of
some certain utterances as a question, while others tagged the same utterances completely as
questions. To solve these kinds of problems, a (sometimes arbitrary) decision had to be make
as what would be the correct annotation, and then the gap in the annotation guide could be
filled accordingly.
Finally, there were problems that arose from ambiguities in the underlying linguistic data,

rather than from mistakes by the annotators or gaps in the annotation guide. For example, in
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some cases the line between a ‘real’ yes/no or wh-question (where the asker of the question
is interested in obtaining some piece of information) and a phatic question (where there is no
information transfer involved) was very hard to draw. In these cases, we paid extra attention
to the original audio and tried to find prosodic cues that would help make us a decision on
which of these options would be the most appropriate one. Although this was helpful in some
cases, in many other cases the definitive annotation that we decided on was chosen more or
less arbitrarily.
After performing the qualitative analysis, and updating the annotation guide accordingly,

we would have liked to make a ‘fresh start’, and test the improved guide on a new corpus to
see if the agreement scores would improve. Unfortunately, it was not possible to do this within
the time constraints of the project.

3.2.4 Language-specific issues

When annotating the two non-English corpora, we came across several issues which prevented
us from directly applying the annotation guide, which was created based on the English corpus
(SCoSE), to these corpora. Some of these problems have to do with the languages themselves,
while others are due to transcription errors and different transcription methods. In this sub-
section, we summarize these problems and explain how we addressed them (where possible).

Spanish

• Some utterances that are not questions are marked with a questionmark in their transcrip-
tion, and some utterances that clearly are questions lack a question mark. For consistency
reasons, we decided to ignore both of those utterances and leave them unannotated.

• In written Spanish, questions are not only marked by a question mark at the end of the
question, but also by an inverted question mark at the beginning of the question. The
transcriptions did not include these inverted initial question marks, which sometimes
caused ambiguity about the start of the question.

• Spanish wh-words are distinguished from relative pronouns by the use of an accent. For
example, qué, with an accent, means ‘what’, whereas que, without accent, means ‘that’.
However, in the transcriptions, these accents are sometimes mistakenly omitted. While
this is unlikely to be a problem for human annotators, it might have a negative impact
on the performance of automated tagging systems (especially if these rely on heuristics
such as the presence of a wh-word).

• In the Spanish corpus, overlaps between speech turns (i.e., both speakers are talking
at the same time) are much more frequent than in the English corpus. This causes a
problem in cases where both speakers ask a question at the same time, since, due to the
way that we had configured ELAN, we could only assign one question annotation to a
given time span. We solved this issue by dividing the time span of the two questions
into two parts, and then assigning the annotation of one question into first part and the
annotation of the other question to the second part. The obvious disadvantage of this
approach is that neither of the two annotations will have the correct time span; however,
our post-processing script automatically corrects this issue.

• Many ‘utterances’ in the transcription comprise of multiple utterances.3 This meant that
we could not rely on utterance boundaries for determining the beginning and end of
questions, but had to find the correct time spans manually.

3For example, this is the case in dialogue 2128h, line 238 and in dialogue 2034h, line 384.
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Dutch

• Like in the Spanish corpus, the Dutch corpus contains a large number of overlaps between
speech turns. However, there were no overlaps between questions, so this did not cause
any problems.

• For each dialogue, the CGN offers both a version that is segmented utterance-by-utterance,
and one that is segmented word-by-word. Initially, our plan (for all corpora) was to man-
ually find the time spans of each question and answer, instead of relying on the utterance
boundaries as defined in the transcriptions. Under this approach, it would be helpful
to know where the word boundaries are, and so we decided to use the word-by-word
transcriptions. However, later we decided to rely on utterance boundaries to determine
question and answer spans after all, but since by this time, the Dutch corpus was al-
ready completely tagged and there was not enough time to re-annotate the corpus using
the utterance-by-utterance transcriptions, we decided to keep these annotations as they
were.
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4 Machine learning

4.1 Machine learning experiments

One aim of this project was to explore machine learning algorithms to automate the annotation
process. Considering the nature of the task and the amount of data we had available, we
decided to take two approaches into account. The first approach was to use a traditional
statistical classification algorithm, and the second one was to use more recently used neural
networks. For the moment, the automatic annotation process only classifies questions. There
are some reasons why we did not include the answers for this part. Firstly, answers are more
complicated to be detected. The span of the answers are varying, and more than one utterance
can be considered as the answer of a question. Moreover, for some questions there are no
answers. These difficulties make the automatic detection and classification of the answers an
arduous task. As a result, we decided to focus on question type identification. In the following
subsections, we explain the algorithms we used, provide technical details of each, and finally,
we give the results and their analysis.

4.1.1 Classical sta s cal approach

Decision trees

Before the emergence of modern neural network approaches, decision trees were a commonly
used algorithm in NLP researches and were known for producing good results for classification
tasks. Domains where this algorithm has been successfully applied include coreference resolu-
tion and for semantic role argument labeling [6, 31]. Decision trees, among other algorithms,
have also been successfully used for question classification tasks [36]; however, this task was
significantly different from the one that we are presenting here. It is mostly focused on classify-
ing features of wh-questions, rather than classifying questions and their discourse contribution
in general.
However, the main reason for using decision trees is that we believe that they are a logical

extension of our previous work on writing an annotation guide, and that they are a natural
fit to our problem. In our annotation guide, we provide step-by-step instructions for human
annotators on which cues to look for in the data and how to use those to assign the correct
question tag. A decision tree algorithm works in much the same way: when provided with a
sample, represented as a set of features (the cues), it follows a sequence of decision steps in
order to classify the sample by asking questions about each feature. However, decision trees
have the advantage of being much more general: rather than relying on a predefined sequence
of steps to take, the optimal sequence is learned based on training data.
The decision tree algorithm tries to fit the training data into a tree structure. It starts with

a single node and iteratively splits up the data, using the most informative feature at each
step. Informativeness of a features can be measured using different metrics; one of these is
information gain [25]. Information gain is the amount of information that a feature provides
about a class. The attributes that have higher information gain reduce the amount of entropy
and split the data optimally. Then, for new nodes, the data is further split with the features
based on their information gain and this process continues until all the leaf nodes are produced
for all the branches of the tree. For classifying a new instance, the value of the feature of the
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instance is checked against the value of the nodes and this process continues until it reaches a
leaf node which predicts the class of the new instance.

Feature extrac on

A crucial aspect of classical classification approaches is the extraction of relevant features for
the problem at hand. These features should be extracted in a way that, on one hand, does not
make the other features redundant and at the same time, does not lead to over-fitting problems
[33]. The list of the features and their corresponding values are shown in table 4.1.

Feature Description Value
has_wh The question contains a wh-constituent True, False
has_or The question contains the word ”or” True, False
has_inversion The question has inverted structure True, False
has_tag The question is a tag question True, False
has_utt_similar The preceding utterance and the question share

at least 50% of the words
True, False

last_utt_incomplete The last utterance is incomplete True, False
has_cliche The question contains a cliché (e.g. ”really?”,

“you know?”)
True, False

length The length of the question (number of words) Numerical value

Table 4.1: Extracted features for the classification task

In choosing our feature set for the task of classification, we looked at our schema and chose
the attributes that either distinguish or differentiate questions and can be easily recognized
by a computer program. Some of the features like has_wh, has_or and has_inversion are the
main clues in recognizing some types of the questions. Some of the features like has_utt_similar
and last_utt_incomplete are not inherently a defining factor to determine types of the questions,
but they increase the probability of some types of the questions like completion suggestion.
For example, in (13), last_utt_incomplete is a cue for determining that a question is a completion
suggestion question, but having a positive value for last_utt_incomplete is not, in itself, a sufficient
or necessary condition for being a completion suggestion.
(13) A: In fact we’ve kind of looked just ...

B: just for the hell of it? (SCoSE/Amy, 640-641)
Among these features, the length of the question is the only feature that has a numerical

value and is not part of the annotation procedure. This feature is not necessarily a defining
characteristic for any of the question types, but our intuition is that usually, phatic questions
are shorter than the other types of the question and hence, that this feature can be helpful for
the classifier to capture this type of the question.
After deciding on the set of features and their values, we used the Python library sklearn

[22] to build up the decision tree model, train it and assess its feature importances (i.e., the
influence of each feature on the decision process). The result is shown in figure 4.1. The result
for the performance of the model can be seen in section 4.2.1.
The scikit-learn package expresses the relative importance of each feature using the Gini

coefficient [9]. The Gini importance tells us how many times a feature has been used to split
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a node in the tree. The result is normalized and presented on scale of 0 to 1. According to the
results, length has the highest Gini score and the features last_utt_incomplete and last_utt_similar
have gotten zero Gini score. This shows that the strategy that a machine can use to obtain
a question type is different from a human annotator. Firstly, the length is a feature that a
computer can use as an important factor to determine the type of the question. Secondly, the
features that can be perceived as good clues for a human annotator to differentiate types of
questions are not used by the algorithm. This is the case for the features that are related to the
last utterance before a question. However, the nature of training data, like the distribution of
question types may affect the feature importance.

Figure 4.1: Informative features

4.1.2 Neural network approaches

In recent years, artificial neural network (ANN) approaches to machine learning have become
more and more popular in NLP and in artificial intelligence more generally (see [18] for a
discussion of these developments and their impact on computational linguistics). Neural net-
works can have many different types of architectures and sizes. We experimented with three
different models, all of them very small-scale (in terms of the number of layers and the number
of neurons per layer), but with somewhat different architectures.
One of the most important problems when designing a neural model is choosing how to

represent the input data; this choice significantly impacts the learning process and determines
what kind of architecture is needed. Each of our three models represents questions in a different
way. First of all, our baseline model uses feature vectors; this both simplifies the problem and
enables us to better compare the neural models to the decision tree algorithm. Our second
model uses a ‘bag of words’ (BOW) representation, in which a sentence is represented in terms
of its word counts. Under this approach, information about the syntactic and semantic structure
of the questions is lost. Trying to use a model like this is an interesting test for to what extent it
is possible to classify questions without such information. Although a priori this might seem an
impossible task, our decision tree experiments showed that sentence length and the presence
of wh-words and clichés are useful features for classifying questions, information that is also
(implicitly) present in BOW representations. Finally, we use ‘raw’ sentences, represented as a
sequence of word representations, as input for our third model, which will be a test for how

26



well this model is at extracting useful features (possibly including syntactic and semantic ones)
on its own.

Baseline: Mul -Layer Perceptron

The first model that we used is the Multi-Layer Perceptron (MLP) classifier from the sklearn
package. The reason for choosing this model is that it is simple but well-established, and could
be trained and tested using the same interface as the decision tree algorithm (which was also
taken from the sklearn package). The MLP takes the same feature vectors that were used for
the decision tree algorithm (see above) as inputs and then feeds these through a single hidden
layer, before predicting the question type.

BOW classifier prototype

Unlike our baseline model, which was already published in a ready-to-use form, our second
model did not previously exist as such. It is based on a simple model for language classification
that was published as part of a tutorial aimed at beginning users of a popular deep learning
framework (PyTorch) [11]. This model is a simple single-layer perceptron that takes as input
a bag-of-words vector and maps it to a vector of scores for each of the class labels. As a final
step, the softmax function is applied to these scores to produce a probability distribution.1
We adapted this model to our dataset and extended it with a ReLU function, which is applied
after the single-layer perceptron but before the softmax layer.2 The structure of the model is
summarized in figure 4.2.
We think that this model is interesting for two reasons. Firstly, as mentioned above, it is a

test for representing sentences in a ‘poor’ way (i.e. without structural information). Moreover,
the model is very simple: it has a single linear layer and a limited number of parameters to
learn. For this reason, it seems quite suitable for training on a small dataset.

BOW vector

YN WH DQ CS PQClass 
probabilities

Linear layer + 
ReLU

w1 w2 w3 wn...

Figure 4.2: Architecture of our BOW prototype

RNN prototype

Our final model is the one that we think is potentially the most interesting one. One of the
types of artificial neural network models that has become especially common in NLP are re-
current neural networks (RNNs). The main advantage of such networks is that they are able to
1The softmax function, defined by f(xi) =

exi∑
j e

xj [24], is a commonly used component in neural networks, and
maps any sequence of numbers to a sequence of numbers between zero and one whose sum is equal to one.

2The ReLU function function is defined by f(x) = max(x, 0) [23]. Although it is very simple, it is also powerful
because it introduces a non-linear relationship between the input and the output (its graph is not a straight line),
and enables our model to approximate a wider set of functions.
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detect relationships between elements in a sequence, which is crucial for modeling the syntax
and semantics of natural language. One of the problem domains in which RNNs have been
successfully used is machine translation, using so-called sequence-to-sequence (seq2seq) mod-
els. A seq2seq model consists of two main components: an encoder and a decoder, both of
them RNNs. In such models, sentences in the input language are fed, word by word, to the
encoder. The result of this is an intermediate representation, that, when training is success-
ful, will contain information about the meaning and syntactic structure of the input sentence.
The decoder component then takes this representation as input and produces a sentence in the
output language.
We believe that, at least in theory, RNN-based models could be useful for our question clas-

sification task, since this tasks relies heavily on syntactic and semantic information. However,
a crucial difference between our task and other tasks where RNNs are commonly used, such as
machine translation, is that we are not interested in mapping a sequence to another sequence,
but in mapping a sequence to class labels. Hence, seq2seq models like those used for machine
translation and related domains are not suitable for our task. However, it might be possible
to adapt the seq2seq architecture to our task by replacing the decoder component by a neural
network that takes the intermediate representation produced by the encoder as input and out-
puts a class label. Such an approach has already been successfully adapted in related domains,
for example in document sentiment analysis [32].
Designing a neural network from scratch is not a trivial task, and any serious attempt to

construct a model that would produce usable results would be beyond the scope of this project.
Thus, the model that we present here is no more than a proof of concept. The model is based on
a simplistic seq2seqmodel for machine translation that was published as part of a tutorial aimed
at beginning users of PyTorch [28]. We modified this model by removing the RNN decoder and
replacing it by a simple linear classifier that maps the encoder input to a probability distribution
of the five question type classes.3
The structure of our model is shown in figure 4.3. The initial inputs to the model are indi-

vidual words encoded in so-called embeddings, which are vectors that, as the model is trained,
accumulate contextual information about the words that they represent. These embeddings are
fed to a Gated Recurrent Unit (GRU) network, which is a commonly used variation of RNNs
[7]. The output of this layer of the network is a sequence of ‘hidden states’, which we concate-
nate to obtain a single representation of the meaning of the sentence. This vector is then fed
as input to the linear classifier, which produces a score for each of the five possible question
types. Finally, by using the softmax function, we obtain a probability distribution.
We performed two different experiments using this setup: in the first one, the initial values

of the embeddings are random and have to be learned by the model. In the second experiment,
we used pre-trained embeddings that were published as part of the spaCy4 Python library [13].
By making sure that the model can make use of contextual information (which in turn is a
proxy for syntax and semantics) from the very beginning, the amount of learning work that
the model has to do is reduced. Using pre-trained vectors is a common strategy in experiments
with small training datasets [27].
The model was trained on our annotations of the Amy dialog in the SCoSE corpus. The

maximum sequence length was set to 20. This number was found by experimentation and
was chosen because it finds a good balance between covering as much of the training data as
3A linear classifier is a model of the form f(x) = Wx+ b, where the parameters W and b are a weight matrix and
a bias vector, respectively. These parameters are adjusted during training in order to optimize for the desired
outputs of f(x). Note that a perceptron, the simplest form of a neural network, is essentially a linear classifier
combined with a non-linear activation function which enables it to approximate a wider range of mathematical
functions.

4spaCy contains several neural models; the model that we used to get our embeddings is called section-
en_core_web_sm; for more details see https://spacy.io/models/en#section-en_core_web_sm.
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Figure 4.3: Architecture of our RNN prototype

possible and keeping the limit low to keep the model as simple and small as possible. Other
(hyper)parameters of the model, such as the learning rate (lr = 0.01) were taken directly from
the original model that our work is based on. The number of units in the hidden layer of the
GRU network (300 hidden units) followed directly from the pre-trained embeddings that we
used; for consistency reasons, we used the same hidden size in both versions of the experiment.

4.2 Machine learning results and evalua on

In this section we describe the experiments carried out for the decision tree model and the RNN
prototype and their results for the prediction of training and testing sets. For both classifiers
we evaluated their performance with the standard metrics: accuracy, precision, recall and F1
measure. The inputs of the algorithms are the extracted question from the annotated corpora
which are identified by the presence of question mark and the output is the prediction of the
question types.

4.2.1 Decision tree

After the extraction of features which explained in the previous section, we performed some
experiments to obtain a decision tree model using the golden standard corpus as the training
data and the experimental corpus as the testing data. For both datasets, we used labeled anno-
tations for evaluation. In the following, we will explain the procedure to build up the model
and discuss the results for the evaluation metrics.
To calculate the decision treemodel, we used an existing implementation available in sklearn.

To do so, we needed to pre-process the output of the feature extraction procedure to build the
appropriate input for sklearn, in which we represented a question as a feature vector. Except
for the length feature, which is represented by an integer value, all features are binary and are
represented by the integer 1 (true) or 0 (false).
Once the new data structures were defined, we passed them to sklearn to build up the model

and as mentioned above, the model was trained using the golden standard corpus and tested
on the experimental corpus. The result of this process was a decision tree which a graphical
representation of it can be found in appendix B.
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We evaluated the performance of this model by testing it on both seen data (i.e. the same
data that it was trained on) and unseen data (the test corpus). The metrics used for this eval-
uation are accuracy, precision, recall and the F1 measure. Accuracy simply measures how
many annotations of the total were correctly predicted. However, this measure needs to be
interpreted with care: it may, in some cases, produce high scores for models that have no pre-
dictive value at all (for example, models that assign the same category to all samples). Hence,
it is imperative to calculate other metrics. The evaluation should also include precision and
recall values. Precision refers the number of correct annotations within the set annotations
classified as positive. On the other hand, recall refers to the number of correct annotations
within the complete set of positive annotations (true positives and true negatives). Finally,
the F1 measure represents a balance between recall and precision and evaluates how well our
model performs regarding precision and recall at the same time. Since the number of classes is
more than two, the calculation for the metrics requires an especial treatment. Particularly, we
used the method macro average of precision, recall and F1 measure. This method, calculate the
metrics for each class (for instance, the precision for YN, the rest of the tags will considered as
negative cases) and performs the regular average over the total number of classes. The macro
average allows to have an overview of the model over the whole data, which is of our interest.
We ran several experiments to look over the impact of different configurations for training

and testing datasets and the features fed to the decision tree. A summary of the scores ob-
tained for the different configurations is shown in the table 4.2. The main configuration uses
the golden standard corpus as the training set and the experimental corpus as the testing set
(see section 3.1.3). To confirm the importance of the contributions of all the annotators in
the capability of the model in prediction, we interchanged the training and testing sets, so
the experimental corpus became the training set and the golden standard as the testing set
(experiment 1). To determine if the scores obtained for the testing set corresponded to the
fact that the annotations for the experimental corpus were done for only one of the annotators
we ran the experiment 2 using only the contribution of the annotator A in the golden stan-
dard as the training set. In the figure 4.1 we can see the order of importance of the features
for the model (main configuration). We ran two experiments to verify if the most important
features were enough to have a good model of classification. These two experiments have the
main configuration for training and testing sets. We only fed the length (Feature: Length)
and recalculated the metrics and in the second experiment we fed only the length and has_wh
features to the decision tree and recalculated the metrics again.
The table 4.2 shows the different values of the metrics for the training and testing sets. As

expected, the values for the training sets were always greater than the values for the testing sets
in all the configurations. The best model in terms of F1 measure for unseen data was the main
configuration, 0.58. However, the model for experiment 1 also was able to learn to identify
different types of questions. The difference with respect to the main configuration is only 0.08
for the F1 measure. The size of the training set for the main configuration is 238 samples and
for the configuration of experiment 1 is 116 samples. Although there was a difference in size,
the model presented a similar performance to the one for the main configuration. This explains
how the performance for the experimental corpus is related to the nature of the training set
and the distribution of question types. In figures 4.5 and 4.4 we can see that the distribution
is different for both corpora. Most of the questions in the experimental corpus were YN about
0.5 and then after that, the second most common type was WH approximately 0.35 while for
the golden standard corpus the most common types were PQ and YN with about 0.45 and 0.38
respectively. Also, We believe that the diversity of the training set is relevant to build up a
model able to generalize. On the other hand, in the experiment 1, we can see an overfitted
model that presents a good performance for the experimental corpus but a poor performance
for the golden standard.
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The results for the experiments concerning the features show the accuracy paradox [35]
where the accuracies are considerably good 0.68 and 0.78 for the first experiment (only the
length and the second experiment, only the length and has_wh respectively), but the rest of
the metrics are substantially low (below 0.50 for the training set and below 0.40 for the testing
set). These two configurations do not have much predictive power, even though the models are
based on the features with more importance according to 4.1. In spite of the importance of the
length feature for the computational approach, the decision tree still needs the other features
to build up a model capable of learning the underline characteristics needed to identify the
different question types.

Figure 4.4: Distribution of question type for
the golden standard corpus

Figure 4.5: Distribution of question type for
the experimental corpus

Data set Accuracy Precision Recall F1
Main configuration
Golden Standard (Training) 0.80 0.90 0.71 0.74
Experimental (Testing) 0.73 0.56 0.60 0.58
Configurations changing training and testing sets
Experiment 1
Experimental (Training) 0.89 0.94 0.89 0.90
Golden Standard (Testing) 0.62 0.40 0.41 0.39
Experiment 2
Golden Standard (Annotator A’s part - Training) 0.88 0.74 0.72 0.73
Experimental (Testing) 0.65 0.52 0.51 0.50
Configurations changing the features
Feature: Length
Golden Standard (Training) 0.68 0.48 0.37 0.36
Experimental (Testing) 0.52 0.22 0.29 0.24
Features: Length and Has_WH
Golden Standard (Training) 0.78 0.49 0.47 0.48
Experimental (Testing) 0.70 0.40 0.40 0.39

Table 4.2: Scores for the different decision tree configurations. Main configuration corresponds to the
model using the golden standard corpus for training. After the configurations were the train-
ing set and the testing set were changed to analysis the contribution of the three annotators
and annotator A. Finally, the configurations where the set of features used to build up the
model were changed.

Although the model was able to learn characteristics of the different questions types to some
extent, given that the F1measure for unseen data is only 0.58, it is not sufficient to conclude that
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Data set Accuracy Precision Recall F1
Perceptron (feature-based)
Golden Standard (Training) 0.63 0.39 0.39 0.37
Experimental (Testing) 0.48 0.37 0.34 0.30

BOW Classifier
Golden Standard (Training) 0.88 0.54 0.52 0.53
Experimental (Testing) 0.67 0.39 0.38 0.37

RNN Classifier
Golden Standard (Training) 0.92 0.76 0.70 0.72
Experimental (Testing) 0.40 0.18 0.18 0.16

RNN Classifier (pre-trained
embeddings)
Golden Standard (Training) 0.91 0.75 0.63 0.66
Experimental (Testing) 0.41 0.16 0.18 0.15

Table 4.3: Scores for the different neural models

our model learned to generalize. One possible next step is to collect more data for training and
testing sets which may improve the performance of the classifier. As discussed in section 4.1.1,
the features play an important role in a decision tree; hence, to improve the performance, it is
possible to revise the feature set and explore new features that may not be part of the process
described in the annotation guide. Such features can be based on syntactic information or
n-grams [36].

4.2.2 Neural network models

Our neural models were trained by feeding all of the input sentences in the golden standard
corpus (one at a time) to the model several times (or ‘epochs’). For the first model, the MLP
from the sklearn package, the number of epochs was determined automatically. For the other
two models, this was not possible; instead, we trained them for 100 epochs and evaluated
the results after each epoch. From this analysis, we learned that in all cases, the model had
converged after around 70 epochs.
A problem during testing of the RNN model was that there were cases in which our model

was not able to assign a question type to some of the questions, either because the question
exceeded the sequence length limit of the model, or because it contained words that were not
present in the training data. In these cases, we defaulted to assigning the question type YN
based on the question type distribution found for English (see section 3.2.3). However, this
happened only three times and is unlikely to have had any effect on the learning process.
For each of the neural models, we computed the same evaluation metrics as for the decision

trees (see the previous subsection for an explanation of these metrics). As can be seen in the
table, the results are mixed: while both the BOW classifier and the two versions of the RNN
classifier have a very high accuracy score on the training set, their precision and recall scores
are far behind that of the decision tree algorithm. Moreover, all of the neural models perform
badly, at least compared to the decision trees, on unseen data; the only model that comes
somewhat close is the BOW classifier. Finally, our hypothesis that supplying our RNN models
with pre-trained vectors would make learning easier is disproved by the results: there is little
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to no difference between the two versions of the model. However, it is possible that with more
data, or with better pre-trained embeddings, we would have seen a difference.
Also, it is important to note that the results of our prototype models (i.e., the BOW classifier

and the two versions of the RNN classifier) should be interpreted with caution. The reason for
this is that the parameters of neural models are initialized using random numbers. During the
testing phase of our experiments, we discovered that these particular models are quite sensitive
to variation in the initial parameters: depending on which ‘seed’ is used for generating random
numbers, the performance of the models can change significantly.5 For the BOW classifier, all
performance measures can vary within a range of around 10 percentage points depending on
which seed is chosen; for the RNN models, there is very little variation in the accuracy scores,
but the other scores (precision, recall, and the F1 measure) can vary quite significantly, within
a range of around 15 percentage points.6
All in all, we can say that the performance of the neural models is not as good as that of the

decision trees. This was only to be expected, given that in general, neural networks need much
more training data than we had available. However, the models still performwell above chance
level, at least on accuracy (given that there are five different classes, a completely random
algorithm would be correct around 20% of the time). Moreover, we believe that, with more
training data and a more sophisticated architecture, the results could improve dramatically.

5In the published version of our code, we manually fixed the seed value so that running these scripts will produce
the same results as listed in the tables in this section.

6Unfortunately, we cannot give precise numbers for the variation range of each of these measures, since it is not
possible to try every possible seed value.
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5 Conclusions

In this report, we presented the results of our work on our supervised project. We had three
main objectives: (1) designing a classification schema for questions and answers, (2) writing
an annotation guide and using it for manual annotation, and (3) exploring machine learning
techniques for automating this process. All of these tasks were completed, although, as always,
there is much room for improvement. In this final chapter, we start by looking back at our work
and identifying areas that could be improved (section 5.1). After this, in section 5.2, we explore
how our work could be built upon in the future.

5.1 Introspec on

In this section, we review our own work on each of the tasks that we completed. For each
task, we identify problems and limitations, and make suggestions as to how these might be
overcome.

5.1.1 Annota on schema

As previously noted, when designing our annotation schema we needed find a balance between,
on one hand, trying to be as precise and fine-grained as possible, and, on the other hand,
keeping the schema as simple as possible to annotate by both human and automatic annotators.
We believe that we have been reasonably successful in finding such a balance; however, there
are some subtleties that a discourse modeling system would need to be aware of but that our
schema fails to address. For example, we annotate an answer as ‘UA’ (uncertain answer) if
the answerer does not give an unambiguous answer or indicates that they are uncertain of the
correct answer. However, this approach does not take into account that some uncertainties
have a very different semantic and pragmatic meaning than others. For example, consider the
fragment in (14):
(14) A: What does he want to do? [Question type: WH, Feature: TH]

B: He doesn’t know exactly. [Answer type: UA] (SCoSE/Amy, 3562-3563)
Since the answer expresses uncertainty, it was tagged as UA. This might seem quite reason-

able, but, suppose that the answer would have been ‘I don’t know exactly’, the same tag would
have been applied, even though that answer would have expressed a fundamentally different
kind of uncertainty. In fact, the actual answer does not express any uncertainty on the part of
the speaker, but under our current schema there is no better way of classifying it.

5.1.2 Annota on guide

Although the guide has been developed mainly based on the English language, and many of
the definitions and instructions make reference of specific features of the English language, the
experiments with the corpora of Dutch and Spanish languages showed that the instructions of
the annotation guide can be adapted to other languages. Moreover, the guide also relies on
some features that are specific to the SCoSE corpus, in particular to the way in which utterance
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boundaries are indicated. However, there are differences in the way that different corpora im-
plement these conventions, especially when it comes to marking utterance boundaries. Hence,
if we were to extend our annotation guide to other corpora, some changes would need to be
made to the annotation procedure.
A different problem is that, despite our efforts to write the annotation guide as explicitly and

precisely as possible, there are still a number of places in the guide where the annotator is asked
to use their ‘semantic judgment’, we would like to remove such instructions to make the guide
more objective. Given that there are many linguistic phenomena that are not yet understood
from a scientific point of view, but about which humans are able to make intuitive judgments,
in some cases, it is likely not possible to replace these instructions by more rigorous ones.
However, in other cases, we might have tried to find a more principled solution, for example
by making reference to the linguistic literature about the topic at hand.

5.1.3 Annota on experiments

As we showed in section 3.2.2, the inter-annotator agreement is in general not very high.
However, it is not completely clear what exactly the causes of this were and how much each
cause affected the scores. In our qualitative disagreement analysis (see section 3.2.3), we
identified several causes of disagreements, and updated the annotation guide to try to address
these. Unfortunately, we did not have time to use the improved annotation guide to annotate
a new corpus and test if and how much this would increase the agreement scores. Hence, we
do not know to what extent our low agreement scores were caused by gaps in the annotation
guidelines, or to what extent other factors (e.g. the inherent difficulty or subjectiveness of the
task) might have played a role.
A related problem stems from the fact that all of the annotators were also group members

(and vice versa) and were also involved in designing the classification schema and writing the
annotation guide. This might have affected the annotations, and also the agreement scores, in
several ways. On one hand, it is possible that, because of the fact that during the annotation
process, we already had a clear conceptual understanding of our classification schema and
knew what cues to look for when annotating, and therefore produced better annotations than
an outside annotator would be able to do based on the annotation guide. Hence, it is possible
that there are further weaknesses in the annotation guide that we did not identify because our
prior knowledge of the classification schema prevented us from making certain mistakes. On
the other hand, it is also possible that precisely this prior knowledge of the task led us (or some
of us) to be biased in favor of our own conceptual understanding of the classification scheme
rather than solely relying on the annotation guide.
In any case, it would have been very interesting to have one or more people outside of

our project group annotate (part of) our corpus based on the annotation guide, and to see if
any difficulties would come up and to what extent their annotations would differ from our
own. Furthermore, asking other native speakers of Spanish and Dutch to annotate part of
the corpora in these languages would have enabled us to calculate agreement scores for those
corpora. Although we have started preparing such an experiment, due to time-related and
practical concerns we were not able to actually conduct it yet.

5.1.4 Machine learning

Regarding our machine learning experiments, the main problem is that we did not have enough
annotations to train the models on. This not only affected the quality of the results, but the
analysis of the results as well, because it is not clear how a machine learning algorithm would
have performed with more and diverse data. Particularly, we cannot predict if the decision
tree will still have a better performance than the neural network approaches.
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5.2 Future work

Based on our work in this project, we think that there are some logical next steps to be taken in
the future, particularly in the area of machine learning. First of all, we would like to address the
problem of automatic labeling of answers. This will require at least two procedures: detecting
the span of the answer and then classifying the answer. While for classifying answers, a similar
approach could be used as for classifying questions, finding answer spans is a task of a very
different nature and is potentially much more difficult. For example, in a conversation, it is
possible that between a question and its answer, there are other utterances that are not related
to the question. At the same time, it is possible that a question lacks an answer altogether. An
algorithm for finding answer spans should be sensitive to this kind of variability in the data.
Another interesting next step for our machine learning efforts would be to try to work around

the problem that there is not enough labeled data by using unsupervised learning techniques.
The obvious advantage of unsupervised approaches is that they do not require labeled data,
but it is unclear whether or not such approaches would be useful for our purposes. This has
several reasons: firstly, in unsupervised algorithms it is much harder to control what kind of
classes the algorithm will make, and it is extremely unlikely that such an algorithm would be
able to create classes that correspond exactly to our annotation schema. Secondly, it is unclear
how the results of such an algorithm could be evaluated. However, it might still have been
interesting to further explore whether such an approach might have been feasible.
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A Deliverables

Our code and annotations can be found on GitLab:
https://gitlab.com/gosseminnema/809-question-annotation-2018/.
See the README.md in the repository for more details.
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C Annota on guide

On the following pages, we include the complete version of our annotation guide.
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1 Introduc on

An important part of corpus annotation is to provide a concise and, at the same time, general
guideline appropriate for the task. This guideline explains different procedures that an anno-
tator should take into account for the task of annotation of question and answers in natural
language dialogues. The current version of the guide focuses on the English language, and the
SCoSE corpus in particular, but for use in future studies it could be easily adapted for different
languages and corpora.

2 Se ng up your environment

Before going through the description of the annotation process, it is necessary to set up the
working environment. This section explains how to install and set up the annotation tools and
download the corpus.
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2.1 Obtaining corpus files

The SCoSE corpus can be downloaded from https://ca.talkbank.org/access/SCoSE.html.
Although it will be enough to download the transcriptions, it is recommended to also down-

load the corresponding audio files. Listening to the audio files makes the annotation task easier,
and, more importantly, there are some cases in which listening to the intonation pattern will
help resolve ambiguities in the transcription.
All the transcriptions of the corpora used in this project use the .cha format for the dialogues

files. It is recommended to read the Symbol Summary document 1 to understand what the
symbols in the dialogues represent.

2.2 Se ng up ELAN

The annotation tool used is ELAN (ELAN Linguistic Annotator)2 which allows annotating video
and audio files. ELAN can open .cha natively, therefore, the files do not need any extra modi-
fications or reformatting.
To install ELAN, please follow the instructions on the official website https://tla.mpi.nl/

tools/tla-tools/elan/download/. ELAN is available for Windows, Linux and macOS. Once
the tool has been installed correctly, it is time for setting up:
• Step 1: Impor ng files

Launch ELAN, click on the menu ‘File’ and then click on ‘Import’. Select ‘CHAT files’. Choose
one of the .cha files of the downloaded corpora. See figure 1. After selecting the transcript
file, ELAN will allow you to add the media file, though this step is not required.
• Step 2: Create Layers

We define layers to separate the different annotations; these layers represent an abstraction
of distinct levels of information, for instance, question types and answer types. In ELAN the
representation of layers are tiers. It is possible to define different layers that will build a
modular structure; later this structure can be used as a direct extraction method of a particular
segment.
This project uses five layers: Question_T pe, Answer_T pe, Feature, Complexit , and

Is_Quoted:

Ques on_Type This layer contains the annotations related to question type. Please see section
3.1.1 for more details about the tag set for this layer.

Answer_Type This layer contains the annotations related to answer type. Please see section
4.1.1 for more details about the tag set for this layer.

Feature This layer should be used in case of a question of type DQ or WH. It is related to the
annotation of features. Please see section 3.1.2 for more details about the tag set for this
layer.

Complexity This layer is used to identify multiple questions. Please see section 3.1.3 for more
details about the tag set for this layer.

Is_Quoted This layer will contain the annotations related to direct and indirect speech. It is
used for both questions and answers. Please see section 3.1.4 for more details of possible
values.

1http://www.bu.edu/linguistics/UG/course/lx865-f02/local/childes-symbols.pdf
2https://tla.mpi.nl/tools/tla-tools/elan/
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Figure 1: How to import a file from the corpora

The following steps is for creating all these layers in ELAN. To create a layer click on the
‘Tier’ menu, and then on ‘Add New Tier’. In the opened window (‘Add Tier’), fill out the form
as follows (see figure 2):

• Tier Name: enter the name of the layer;
• Annotator: enter your name;
• Input Method: select ‘English (ASCII)’.

Leave the default values in the rest of the fields. Now click on the ‘Add’ button to create the
layer. It is possible to create all of the layers without closing the window.
• Step 3: Annotate

Before continuing, save the document: click on the menu ‘File’, and then on ‘Save’. This step
will create an EAF file (.eaf), which is ELAN’s native file format. ELAN allows to make partial
annotations and resume it later using the ELAN file. Before closing the file, always save your
work so your annotations will be available for the next time.
To annotate, you should first select the timespan which corresponds to the utterance you

want to annotate. Next, you should choose the appropriate tier by clicking on it. Once you
have clicked on the layer you now enter the tag, as is shown in figure 3.

3 Tagging ques ons

This section describes how you should tag questions. First, in section 3.1, we explain our tag
set, and then, in section 3.2, we provide a step-by-step description of the tagging process.
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Figure 2: How to create a layer

3.1 Tags

Our annotation scheme uses several layers, each of which is associated with its own set of tags.
In this section, we define these tag sets, layer by layer.

3.1.1 Ques on types

Summary: Classification of questions according to formal and functional criteria. Layer:
Question_t pe. Tags: YN (yes/no question), DQ (disjunctive question), PQ (phatic question),
CS (completion suggestion), WH (wh-question)
In this section, different types of questions are explained, a formal definition is provided and

for each one of them some examples are included. We see each question type as a combination
of a specific form, i.e., a set of syntactic characteristics, and a specific function, i.e., the role
that a question plays in the discourse.

1. Yes/no question YN): In these types of question, a proposition is expressed and the
expected answer will confirm or deny this proposition. Yes/no questions look for a real
answer from the other participant of the conversation. Questions of this type have the
form ‘yes/no’ the function ‘non-phatic’ to distinguish it from phatic questions (type #3).
Hence, in our schema, just having the form of a yes/no question is not sufficient to be
classified as a ‘real’ yes/no question.
Definition 1. A yes/no question asks the other participant to confirm or deny a proposi-
tion.

Prototypical examples

(1) Or will you be just gonna hanging around with Brianne? (SCoSE/Amy, 35)
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Figure 3: How to annotate an utterance

(2) Oh d’you have a white shirt? (SCoSE/Amy, 130)
(3) Does it? (SCoSE/Amy, 70)

2. Disjunctive question (DQ): Questions of this type usually contain “or” to distinguish
between different options which are proposed to the hearer. The hearer can choose one
of the options or state a third option of his own. The function of these questions is to ask
for a feature, which should be annotated on its own tier (see 3.2).
Definition 2. A disjunctive question asks the hearer to choose between one of several
options.

Prototypical examples

(4) Is the wedding on Sunday or is it Saturday? (SCoSE/Amy, 227)
(5) Do you want coffee or tea?

Note. Disjunctive questions always expect a feature as an answer. This means that some
questions containing ‘or’ (e.g. questions ending in ‘or not?’) are not disjunctive questions.

3. Phatic question (PQ): Phatic questions are asked to continue participation in commu-
nication or to indicate that the listener follows the conversation or to express surprise,
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rather than to ask for some kind of information. Phatic questions often contain clichés
like ‘you know?’ or ‘right?’, but in principle they can have any form and are distinguished
by their function rather than by their form.
Definition 3. Phatic questions are questions that have a purely communicative purpose
and that do not expect an informative answer.

Prototypical examples

(6) Oh really? (SCoSE/Amy, 28)
(7) Right? (SCoSE/Amy, 120)

Note. In some cases, it is hard to decide if a question expects an informative answer or
not, and hence, whether it is a phatic question or a question of one of the other types
(e.g. YN, WH). Cues from prosody and the discourse context can be helpful for making
this distinction.

4. Completion suggestion (CS): Sometimes, in the middle or at the end of an utterance,
the other participant of a conversation asks a question in a way to suggest an option or
multiple options to the first speaker so he/she can complete his/her statement with the
information provided in the question. One typical situation is when the speaker hesitates
to say what he/she means and the one who asks the question tries to help him/her to
finish his utterance.
The form of a completion suggestion can vary, but in all cases, it logically continues the
previous utterance, and often, it interrupts this utterance.
Definition 4. Completion suggestions are questions that propose an expression to the
other participant to be used to finish his/her statement.

Prototypical examples

(8) A: It includes heat and, uhm, I think...
B: Water? (SCoSE/Amy, 747)

5. Wh-question (WH): This type of question is easy to spot as it always contains a wh-
constituent. Usually, this constituent, introduced by a wh-word (like what, who, where,
when, which, how,...), appears at the beginning of the question. Wh-questions ask for a
feature which should be annotated for its function.3.1.2.
Definition 5. A wh-question is a question that contains a wh-constituent (introduced by
a wh-word like what, who, where, when, which, how).

Prototypical examples

(9) What are your plans now? (SCoSE/Amy, 241)
(10) When will you guys get off? (SCoSE/Amy, 243)
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3.1.2 Features

Summary: Only forWH, DQ; indicates the semantic function wh-phrase/disjuncts/expected
answer. Layer: Feature. Tags: • TMP (temporality) • LOC (location) • AG (agent) • TH
(theme) • OW (owner) • RE (reason) • CH (characteristic)
Both the wh-phrase in a wh-question, and the disjuncts in a disjunctive question, have a

particular semantic role in the question; the expected answer should contain a constituent
with the same role. For example, in ‘When did you leave the party?’, the wh-phrase ‘when’
denotes the time when the addressee left the party, and an appropriate answer to this question
(e.g. ‘around midnight’) should also have this semantics. A similar example for a disjunctive
question would be ‘Did you leave the party before midnight or later?’.
In our annotation scheme, semantic roles are called ‘features’. All wh-questions and disjunc-

tive questions (but no questions of any of the other types) should be annotated with a tag, on
the Feature layer, indicating their respective feature. Answers should never be tagged with a
feature; this would be redundant since the feature applies both to a constituent in the question
and to the corresponding constituent in the answer. There are eight different tags for features:

1. Temporality (TMP): the constituent refers to a moment or a period related to the event
described in the question;

2. Location (LOC): the constituent refers to a location related to the event described in the
question;

3. Agent (AG): the constituent refers to the person (or, less commonly, the entity) that
performed the action described in the question;

4. Theme (TH): the constituent refers to the person or entity that underwent the action
described in the question;

5. Owner (OW): the constituent refers to the person (or other entity capable of ownership,
such as an organization) who owns (in a broad sense that also includes, for example,
family relations) the entity that is described in it;

6. Reason (RE): the constituent refers to the the reason or motive behind the event described
in the question;

7. Characteristic (CH): the constituent refers to a characteristic of the event described in
the question.

In wh-questions, the feature of the wh-constituent is closely linked to the wh-word that is
used. These correspondences are summarized in Table 1.

3.1.3 Complexity

Summary: Indicates if the utterance contains one or more questions. Layer: Complexit .
Tags: • SQ (single question) • MQ (multiple questions)
In some cases, a single utterance, or even a single sentence, can comprise multiple ques-

tions. These questions do not necessarily have the same type and should therefore be tagged
separately; however, since they are part of the same utterance they have a strong pragmatic
relationship, they should also be tagged as a whole. Hence, we define two types of utterances:

1. Single-question utterances (SQ): utterances that contain only one question;
2. Multi-question utterances (MQ): utterances that contain at least two questions.
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Wh-word Features Code
What + focus phrase Feature(focus phrase)
When temporalit TMP
Where location LOC
Who agent AG
Whom theme TH
Which + focus phrase Feature(focus phrase)
Whose Owner OW
Why Reason RE
How Characteristic (Ch.) CH

Table 1: Wh-words and features

Obviously, there also exist utterances which contain no question at all, but these should not
be tagged.
Note. We define an ‘utterance’ as a speech fragment uttered by a single speaker. In the .cha
version of the transcriptions, the beginning of each utterance is marked by *SPEAKER: (where
SPEAKER is the speaker’s code); in ELAN, each utterance is marked as a single annotation. An
utterance consists of one or more sentences (each of which ends in a period, a question mark,
or an exclamation mark).

3.1.4 Quota ons

Summary: Indicates if the question is used in direct or in indirect (quoted) speech. Layer:
Is_quoted. Tags: • QQ (quoted question) • NQ (non-quoted question)
Conversations sometimes include quotations; for example, a speaker might be recounting a

conversation that they had earlier with someone else, or a conversation between other people
that they overheard. We call this ‘quoted speech’: it is speech that is reporting other people’s
speech, rather than speech that is directly aimed at the other discourse participants. ‘Non-
quoted speech’ is all other speech: it is speech that is not part of a quotation. Questions can
occur in both types of speech, and should be classified accordingly:

• Quoted questions (QQ): questions that are part of a quotation, and, as such, are not
expected to be answered by the addressee.

• Non-quoted questions (NQ): all other questions

Note. Although QQ questions are not expected to be answered by the addressee, this does not
necessarily mean that there will be no answer at all: in some cases the speaker might also
recount the answer that was given in the original discourse (e.g. ‘They asked me …, and then
I said …’).

3.2 Tagging procedure

When annotating (part of) a corpus, go through it line by line. Each line should be treated as
a separate utterance. For each utterance, follow the following steps:
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• Step 1: Iden fying ques ons

Summary: Only annotate utterances that end in a question mark (in the transcription).
The first step is to identify whether or not the utterance contains at least one question. Note

that, in principle, this is not a trivial task: there are many factors (including syntax, prosody
and the pragmatic context) that determine whether or not the utterance has an interrogative
meaning. It would be too complex and time-consuming to do a full analysis of all of these
factors for each sentence, so you should not attempt to do this. Instead, simply use the analysis
of the original transcribers of the corpora: all utterances that they considered to be questions
are marked with a question mark at the end of the sentence.3

• If you find a question mark: go to step 2. 5
• Otherwise: skip this utterance and go to the next one.

Note (1). Beware that transcriptions can and do contain mistakes; in some cases, questions
marks might have been placed or left out in error. If an utterance is not ended by a question
mark, never tag it, even if you believe that the question mark was omitted erroneously. If there
is a question mark, and if you think that this might be a transcription error, first analyze the
utterance carefully with the help of the media files of the corpus (if available) and try to rule
out that this utterance is a question with a non-canonical form (e.g. a yes/no question without
inversion) or a non-canonical function (e.g. a rhetorical question). If you still believe that it is
a transcription error, ignore the utterance and mark in the log that you did so.
Note (2). Even if only part of an utterance is interrogative, the entire utterance should be tagged
as a question.
Example 1. The following sentences are ended by question marks, and from their semantics
it is obvious that they are indeed questions:
(11) Oh really? (SCoSE/Amy, 28)
(12) What colour is it? (SCoSE/Amy, 75)

Example 2. Question (13) lacks a question mark, and as such should not be tagged, even its
semantics would justify this.
(13) Cómo se llama. ‘What is his name.’ (TalkFriend/Spanish, 274)

Example 3. (14) is an example of an utterance that, judging by the transcription, clearly looks
like a question. However, when taking into account the intonation of this utterance (using the
audio recordings), it becomes clear that the transcription is mistaken: in fact, the utterance that
was produced is not a question, but an affirmative sentence (‘Si ya no estarían trabajando los
dos sino uno.’) followed by a discourse marker that expresses regret on the part of the speaker
(‘Noo...’). Confusingly, in Spanish, ‘no’ can also be used at the end of (tag) questions, but this
‘no’ has a very different intonation than ‘no’ as a discourse marker, and it is easy for a native
speaker to detect the difference.
(14) Si ya no estarían trabajando los dos sino uno, no? ‘Yes, they would no longer be working

together but only one, no?’ (TalkFriend/Spanish, 642).

3Note that this notation is sometimes different from the normal convention for marking questions in written
language. For example, in written Spanish, questions not only have a question mark at the end, but also an
inverted question mark at the beginning. In the TalkBank corpora this is not the case.
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• Step 2: Determining complexity

Summary: Check if the utterance contains multiple questions (if so, annotate MQ) or just
one question (if so, annotate SQ).
Look for signs that the utterance contains more than one question. If the utterance comprises

more than one sentence, and if there is more than one question mark, this is a strong indication
that there are multiple questions. Also, if you see a question that contains a coordination
(typically with ‘and’), check if each of the coordinates is a question of its own.

• If there is more than one question:
1. Mark the entire sentence with MQ on the Complexit layer.
2. For each sub-question, find and mark its timespan.
3. For each sub-question, execute step 3 and subsequent steps.

• Otherwise: go to step 3.
Example 4. The utterance in (15) contains two questions, ‘And him in what?’ and ‘In golf?’.
The complete utterance should be tagged with MQ on the Complexit layer. The first part
should be tagged asWH (Question_t pe), TH (Feature), and DS (Complexit ). The second
part should be tagged as YN (Question_t pe) and DS (Complexit ).
(15) Y e-, él, él en qué? En golf.4 ‘And him in what? In golf?’ (TalkFriend/Spanish, 557)

• Step 3: Assigning ques on types

Summary: Check the definitions of WH, DQ, YN, CS, PQ and apply the first matching tag.
Go through all of the question type definitions and check if the current question matches

that definition. Once you have a match, stop and tag the question accordingly. If nothing
matches, assign the last tag on the list (i.e., PQ), unless you have a very strong suspicion that
the utterance you are looking at is not in fact a question (i.e. that the question mark in the
transcription was added erroneously) – see the note in step 1.
Use the following order for trying definitions:
1. Wh-questions (WH)
2. Disjunctive question (DQ)
3. Yes/No questions (YN)
4. Completion suggestion (CS)
5. Phatic questions (PQ)
• If you assigned DQ or WH: go to step 4.
• Otherwise: go to step 5.

For examples for each of the question types, go to section 3.1.1.
• Step 4: Assigning feature types

Summary: For wh-questions with when, where, who, whom, whose, why, how: choose the
feature from the list. In all other cases, find the most likely feature based on semantics.
4Note that the second question (very likely mistakenly) does not end in a question mark, so it should not be tagged;
the tags given here are for illustration purposes only and apply to the hypothetical situation in which it would
have been marked with a question mark.
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• For wh-questions (WH): first find the main wh-phrase in the sentence. The ‘main’ wh-
phrase is defined as:
(a) The fronted wh-phrase (in English and other languages with wh-movement), if there

is one;
(b) More generally, the wh-phrase that, according to your semantic judgement, refers

to the piece of information that the asker of the question would like to know.
– If the main wh-phrase starts with when, where, who, whom, whose, why, or how (in En-
glish) or the translation equivalent of one of these wh-words in a different language,
choose the corresponding feature from Table 1 (page 8).

– If the main wh-phrase starts with what or which plus a ‘focus phrase’ (e.g. ‘what
[book]’, ‘which [wealthy country]’), choose the feature from the table that comes
closest to describing the semantic role of the focus phrase. Do this by using your
own semantic judgment, but look, where possible, for clues in the syntactic structure
of the sentence (see the note at the bottom of this step).

– If the main wh-phrase only consists of what, without a focus phrase, choose the
feature from the table that comes closest to describing the semantic role of the wh-
phrase. Again, use your semantic judgement and syntactic cues.

• For disjunctive questions (DQ): identify the disjuncts in the sentence. Then, choose
the feature from the table that comes closest to describing the semantic role of these
disjuncts. Again, use your semantic judgment and clues from the syntax of the wh-phrase
(see the note below).

Go to step 5.
Note (1). If the semantic role of the phrase that you are tagging does not correspond to any of
the feature type definitions, default to the tag TH.
Note (2). The following syntactic clues can be helpful for identifying the feature of a focus
phrase or of a disjunct in a disjunctive question:

(a) Syntactic role/position: agents (AG) are often subjects; themes (TH) are often objects.
(b) Prepositions: in prepositional wh-phrases, the preposition (or postposition) can sometimes

give clues about the semantic role of the phrase (but note that some are ambiguous):
• ‘in’, ‘at’, ‘under’, ‘behind’, … ⇒ location (LOC)
• ‘in’, ‘at’, ‘after’, ‘during’, … ⇒ temporality (TMP)
• ‘because of’, ‘thanks to’, … ⇒ reason (CH)

Example 5. In (16), the wh-constituent is easy to find: it is ‘what’, located at the front of the
sentence. It is not followed by a focus phrase, so we have to try to find the semantic role of what
itself. In this case, what represents the contents of the plans of the addressee of the question;
the semantic role that comes closest to describing this is theme (TH).
(16) What are your plans now? (SCoSE/Amy, 241)
In (17), the wh-constituent, where, is not fronted, but is still easily identifiable. For where,

the feature can be found in the table: it is ‘location’ LOC.
(17) To where? (SCoSE/Amy, 2483)
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• Step 5: Determining ‘is quoted’ status

Summary: If the transcription indicates quoted speech (or if there are other strong clues):
annotate QQ; otherwise annotate NQ.
Check if the question you are looking at was uttered in the context of direct or of indirect

speech. To do this, look for clues in the transcription. Indirect speech is indicated in one of
the following ways:

(a) It starts with `` and ends with '';
(b) It is introduced by +";
(c) Is is ended by +".

(d) The preceding utterance is ended by +"/.

If the transcriptions indicate that an utterance, or part of an utterance, is quoted, always
annotate it as such. However, if there is no such indication, it is still possible that the utterance
is quoted speech. If you believe that this might be the case, use the following two factors to
guide your decision:

(a) Prosody: listen carefully to the audio recording of the utterance (if available). If the
speaker is using an unusual intonation (e.g. imitating someone else’s voice), this could
be an indication of indirect speech.

(b) Pragmatic context: if the question you are looking at is part of a story (or conversation) that
the speaker is telling from the perspective of someone else, it is likely that it is indirect
speech. However, be careful: it is also possible that the speaker interrupts their story to
ask a question ‘as themselves’; in this case, the question is obviously not indirect speech.

• If the question is (part of) indirect speech: annotate QQ on the Quoted layer.
• Otherwise: annotate NQ on the Quoted layer.

Example 6. (18) is quoted speech: it is marked with quotation marks and from the context it
is clear that the speaker is not asking this question to her conversational partner, but is simply
reporting that someone else asked this question. By contrast, (19) is not marked with quotation
marks and is asked directly to the speaker’s interlocutor.
(18) “So you’re gonna be home then?” (SCoSE/Amy, 33)
(19) What colour is it? (SCoSE/Amy, 75)

• Step 6: Checking your annota ons

Check your own annotations for the current question. Please pay attention to the following:

• Check that you included a tag in each layer that you needed to tag (e.g., if you annotated
a question as WH or DQ, make sure that you also include a feature);

• Check that every tag was placed in the correct layer;
• Check that there are no typos in the tags that you used
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Question_Type (Code) Anwer_Type (Code) Description
YN, CS PA Positive Answer
YN,CS NA Negative Answer
DQ, WH FA Feature Answer
YN, CS, DQ, WH, PQ PHA Phatic Answer
YN, CS, DQ, WH, PQ UA Uncertain Answer
YN, CS, DQ, WH, PQ UT Unrelated Topic
YN, CS, DQ, WH, PQ DA Deny the Assumption

Table 2: Possible answers types according to question types

4 Tagging answers

This section explains how to annotate answers. First in section 4.1.1 we explain the different
tags and in section 4.2 we explain the process you should follow to tag the answers.

4.1 Tags

This section contains the description of each type of answers and the tags that correspond to
those types.

4.1.1 Answer types

Summary: Classification of answers. Layer: Answer_t pe. Tags: PA (positive answer),
NA (negative answer), FA (feature answer), PHA (phatic answer), UA (uncertain answer), UT
(unrelated topic), and DA (deny the assumption)
In this section, different types of answers are explained, a formal definition is provided and

for each one of them some examples are included. Contrary to the questions, we do not make
a distinction between form and function. Instead, answer types are based on the types of
questions that they respond to. The correspondences between question types and answer types
are summarized in table 4.1.1.

1. Positive answer (PA): This type of answer is expressed to confirm the proposition con-
tained in the question. Usually, but not always, positive answers include positive tokens
(such as yes, right, okay, sure ah, oh yeah,...). Positive answers are expressed in response
to yes/no and completion suggestion questions.
Definition 6. A positive answer is an utterance that indicates that the proposition of a
question is true.

Prototypical examples

(20) Q: Are you still friends with all those same people if it doesn’t work out?
A:Exactly (SCoSE/Amy, 2707- 2808)

(21) Q: Yeah, do you really?
A: Yeah! (SCoSE/Amy, 218-219)

Note. If an answer expresses some uncertainty, but is clearly more positive than negative,
it should still be tagged as a positive answer.
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2. Negative answer (NA): Negative answers are opposite of positive answers. This type of
answer denies the proposition contained in the question. It is very likely that the answer
includes negative tokens (such as no, not, never,...). Negative answers are expressed in
response to yes/no and confirmation suggestion questions.
Definition 7. A negative answer is an utterance that indicates that the proposition of a
question is false.

Prototypical examples

(22) Q: Are you going too?
A: Oh I can’t. (SCoSE/Amy, 323- 324)

(23) Q:do you know anyone that goes there?
A: No! (SCoSE/Amy, 218-219)

Note. If an answer expresses some uncertainty, but is clearly more negative than positive,
it should still be tagged as a negative answer.

3. Feature answer (FA): In feature answers, the speaker refers to the feature that has
been asked for in the question. This type of answer answers either a wh-question or
a disjunctive question.
Definition 8. A feature answer expresses the feature or features that have been asked in
the question.

Prototypical examples

(24) Q: What colour is it?
A: It is midnight blue. (SCoSE/Amy, 75- 76)

4. Phatic answer (PHA): Phatic answers play a role that is similar to that of phatic ques-
tions. Phatic answers can be expressed in response to any type of question.
Definition 9. Phatic answers are utterances with a purely communicative purpose which
do not have any informational content.

Prototypical examples

(25) Q: So what is the point?
A: Yeah! (SCoSE/Amy, 3497- 3498)

5. Uncertainty answer (UA): These type of answers is used when the speaker does not
know the answer or cannot provide the information that is asked in the question. This
type of question often contains expressions like ‘I don’t know’ or ’I am not sure’.
Definition 10. An uncertainty answer indicates that the speaker does not know or cannot
provide the information that is asked in the question.
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Prototypical examples

(26) Q: Is the wedding on Sunday or is it Saturday?
A: It’s ... I don’t even know. (SCoSE/Amy, 227- 228)

Note (1). In some cases, an answer expresses uncertainty, but also provides the informa-
tion that the question asked for. In such cases, the answer is not an uncertainty answer
but has the type of the provided information.
Note (2). A disjunctive answer to a yes/no question should be considered to be an un-
certainty answer. For example, in (27), the first part of the answer (‘that’) confirms the
proposition in the question, while the rest of the answer (‘or else ...’) denies it and pro-
poses an alternative. Overall, the answer does not confirm or deny the proposition and
should be tagged as an uncertainty answer.

(27) Q: You go through four years of regular school, and then to art school or what?
A: That, or else I transfer to a university that has a stronger art department.
(SCoSE/Amy, 908-909)

6. Unrelated topic (UT): Unrelated topic answers are those answers whose informational
content is not related to the question in a direct way. In other words, the question asks
some particular information and the answer does not provide that required information
directly or the answer speaks about a completely different proposition.
Definition 11. Unrelated topic answers are answers that are not related to the question.

Prototypical examples

(28) Q: when will you guys get off?
A: my last exam is like. I don’t know.5 (SCoSE/Amy, 243- 244)

7. Deny the assumption (DA): ‘Deny the assumption’ answers are expressed when the
question has some presupposition about a phenomenon and the answer negates that pre-
supposition. For example, the question ‘have you stopped smoking?’ presupposes that
you used to be a smoker, even if it is answered negatively. By answering along the lines
of ‘I never smoked’, you denied this presupposition. ‘Deny the assumption’ answers are
quite different from negative answers, although, in many cases, they have a similar form
(e.g. they contain a negation); which of the two types applies in a specific situation
depends on the context.
Definition 12. Deny of assumption answers, deny the assumption that the question has
taken into account.

Prototypical examples

(29) Q: what are your plans now?
A: I don’t have any plans. (SCoSE/Amy, 241- 242)

5In this particular example, ‘I don’t know’ is an expression about the date of the exam and not an answer to the
question
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4.1.2 Quota ons

The definitions and tags as described in section 3.1.4 apply to questions as well as to answers.

4.2 Tagging procedure

• Step 1: Iden fying answers

Summary: The answer should be a single utterance that occurs shortly after the correspond-
ing question, is pragmatically and/or semantically related to the question, and is not itself a
question.
The hardest part of answer tagging is identifying what and where exactly the answer is. What

you should do is try to find a single, complete utterance that satisfies the following conditions:

• The utterance should be uttered shortly after the question.
– Unfortunately, ‘shortly’ cannot be defined objectively. In many cases, the answer
will be the utterance directly after the question, but in some cases, it can be one or
a few utterances after that.

– In some cases, the answer will interrupt the question, i.e., the answer will be given
while the question is still being formulated.

• The utterance should be pragmatically and/or semantically related to the question that
it answers.

– Prototypically, the answer will be uttered in response to the question (pragmatics)
and contain the information that was requested in the question (semantics).

– In some cases, the utterance can be indirect, or be semantically unrelated to the
question. However, if it is uttered as a response to the question, it should still be
considered to be an answer.

– If the utterance is uttered in response to either an external stimulus or to an utterance
other than the question, it should not be tagged as an answer.

• The utterance is not itself a question.
– If a question is directly followed by another question, this second question should al-
ways be tagged as a question rather than as an answer, even if it is asked in response
to the earlier question.

• Interjections (e.g. ‘uhm’, ‘mhm mhm’) can also be answers.

Note (1). In some cases, there is no answer at all. In such cases, you do not have to tag anything.
Note (2). The only case in which you should annotate more than one utterance as the answer is
in cases where a speaker is interrupted by another speaker, and continues their answer in the
next utterance.
Example 7. (30) is an example of a prototypical case where the answer is simply the first
utterance after the question. On the other hand, in (31), the situation is more complex: the
answer to the question in the first line is given in the third line (‘Is it a guy or a girl?’/‘It’s a
guy’), and the answer to the second question is given in the fourth line (‘A woman teacher?’/‘A
guy teacher’)
(30) Q: What colour is it?

A: It’s midnight blue. (SCoSE/Amy, 75-76)
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(31) Q: Is it a guy or a girl?
Q: A woman teacher?
A: It’s a guy.
A: A guy teacher. (SCoSE/Amy, 2296-2300)

Example 8. The answer in (28) above is an example of an utterance that does not directly
answer the question that was asked, but is clearly uttered in response to it. Utterances like
this should be tagged as an answer and assigned the type UT. By contrast, in (32), from the
context it is clear the utterance that follows the question is uttered in response to a stimulus
that is external to the conversation (i.e. the ‘handsome man’ that the speaker sees), not to the
question that was asked; and the question itself is never answered. In such cases, nothing will
be tagged as an answer.
(32) Q: Wat doet-ie? (‘What does he do?’)

A: Ik zie een mooie man. (‘I see a handsome man.’) (CGN/fn008003, 91-92)

• Step 2: Assigning answer types

Summary: For answers to YN, CS questions, first try PA, NA; for WH, DQ, first try FA; after
this, and for other question types, try DA, UA, UT, PHA (in that order).
For assigning answer types, first check the type of the question that the answer responds to.

• If the question has type YN or CS: first check if the answer matches the definition of
PA (Positive Answer) or NA (Negative Answer). If either of these matches, apply one of
these two tags, as appropriate. If not, go to ‘All question types’ below.

• If the question has type WH or DQ: first check if the answer matches the definition of
FA (Feature Answer). If it does, apply this tag. If not, go to ‘All question types’ below.

• All question types: check the following answer types in the specified order, and apply
the first one whose definition matches:

– DA (Deny the Assumption)
– UA (Uncertainty Answer)
– UT (Unrelated Topic)
– PHA (Phatic Answer)

For examples of each of the answer types, go to section 4.1.1.
• Step 3: Determining ‘is quoted’ status

Follow the same steps as in step 5 of the tagging procedure for questions.
• Step 4: Checking your annota ons

Follow the same steps as described in step 6 of the tagging procedure for questions.

5 Troubleshoo ng

This section lists the possible problems you may face while annotating.

• I havemistakenly created an annotation in a layer. How can I erase the annotation?
Select the annotation, right-click on it and then choose ‘Delete annotation’.
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• Two utterances need to be tagged, but in the transcription, they appeared over-
lapped. How can I annotate both of them?
First, identify the shortest one. If this utterance is in the beginning or middle of the over-
lapping, you should tag from the beginning of the overlap until the end of the utterance,
and then begin the second annotation for the longest one. In the other case, you should
tag the longest one from the beginning until the second utterance starts and then tag the
second utterance. See figure 4.

Figure 4: How to annotate overlapping utterances

• The answer to a question is not the following utterance. (This can be the case when
the speaker adds more information or there exists more than one question, and the
hearer answers first one of the questions.) Is there any identifier of which answer
belongs to which question?
There is not such identifier. You should annotate the question and the answer as usual,
without extra information.

• There is an interruption in the question or answer I am annotating. What should I
do?
The strategy to obtain the whole question/answer will be to enumerate the tags. That
is, in the Question_T pe layer, whenever there is an interruption, you should annotate
the question as usual, but add an underscore and number (which will identify the order)
starting from 1. For example, you classify the question as aWH question, but the question
is split into two utterances, then your tags for each utterance that made the complete
question will be WH_1 for the first utterance and WH_2 for the second one. The Figure 5
illustrates this.
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Figure 5: How to annotate interrupted utterances. Question: or anyone who ... + ... knows
anyone who goes there?
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