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Chapter 1

Introduction

This report presents our efforts to develop a system that takes sentences in
natural language, parses them in the Universal Dependencies (UD) framework
and applies a set of rewrite rules on the UD parses to produce Abstract Meaning
Representations (AMRs) of the sentence. The rewriting system is supported
with a lexical resource containing predicates from the PropBank dataset, a part
of which is enriched with semantic role information.

In chapter 2, we discuss the motivation for our project and outline the back-
ground frameworks, namely UD, AMR and Grew. We also present the corpus
used for evaluation.

In chapter 3 we describe the Core System underlying our project. Addi-
tionally, to aid the development process, we built tools and integrated existing
packages in a Development Tools/Pipeline (see section 3.3 of the report). This
development pipeline handles conversion between formats of representation for
UD and AMR, evaluation of our rewrite system)

In chapter 4, we introduce the measures used for evaluating our system. We
then present the results on the first 100 sentences from our corpus, with analysis
on the best outputs, and outline some areas for improvement. Finally, we present
the results on the remaining 1,462 sentences from the corpus, showing how our
system performs on “unseen” data and with an larger, albeit incomplete, lexicon.

In chapter 5 we discuss the need for semantic role labelling for disambigua-
tion. We present our approach to annotating a subset of PropBank’s predicates
and report our inter-annotator agreement. A proposal for an automated GRS
identification using clustering is then outlined. Finally, we discuss some of the
more challenging characteristics of AMR and draw similarities to related prob-
lems.

We summarise our work and outline some areas worth exploration in chap-
ter 6.

1



Chapter 2

Background and Related Work

2.1 Motivation
The lack of appropriately annotated data has been a perennial problem within
the field of natural language processing (NLP)[6]. While annotated resources
at the surface realisation level - in the forms of treebanks for English and other
languages, as well as under the Universal Dependencies (UD) framework - is rela-
tively abundant; the amount of semantically, or semantically-oriented, annotated
data is much more limited.

A key challenge of producing semantic, or semantically-oriented, annotations
is the complexity of the task. To annotate semantically requires more than recog-
nising parts of speech and linking dependencies; it requires an understanding of
sentence meaning, identification of appropriate concepts and relations between
them. This has been a barrier to the development of large sets of semantically-
oriented annotated data.

However, the authors of [2] have demonstrated the viability of using graph
rewriting methods to move from surface (syntactical) annotations to an inter-
mediate surface-deep structure, then to a deep structure (akin to Chomsky’s
syntagmatic theory), and eventually to semantically-oriented annotations includ-
ing Abstract Meaning Representation (AMR) and Restricted Minimal Recursion
Semantics (RMRS).

Notably, they have designed a system, Grew, comprising a set of transforma-
tions and packages of transformations to move from surface Sequoia (a framework
of French syntactical annotations) to deep Sequoia and eventually to AMR as
well as to RMRS. The resulting deep structure-like annotations from the graph
rewriting process has an F-measure score of 0.95981, lending support to the case
that the Grew system may be a viable method for producing AMR annotations
from surface annotations. However, no evaluation score is available for the deep
Sequoia to AMR rewrites due to the lack of an AMR Bank in French.

Our interest lies in the potential of graph rewriting for enriching the avail-
able pool of data for AMR and other meaning representations. Currently, there

1Based on new edges, and excluding surface relations.
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2.2. Universal Dependencies (UD) 3

exists a multitude of semantic dependency formalisms, and a widely accepted
framework has yet to emerge2.

We see that, in the interim before agreed standards appears, effort will have
to go towards developing different sets of semantic or semantically-oriented data.
This current state-of-play has the effect of hampering entry into semantically-
oriented data, as researchers await standards to emerge. Therefore we see a
system that can satisfactorily generate semantically-oriented from surface anno-
tations, as well as convert, or aid the conversion, between semantically-oriented
annotations, as having the potential to contribute meaningfully towards the ad-
vancement of research in semantics-focused NLP, as well as development of down-
stream NLP applications.

2.2 Universal Dependencies (UD)
UD is a framework for syntactic annotation that emerged in 2014. The goal of
the project is to build a cross-linguistically consistent treebank[15]. It aims to
tackle problems arising from the fact that different languages had used different
and incompatible annotation schemes, making multilingual research on syntax
difficult.

UD merges some of the previous efforts to create a universal annotation
scheme, namely, the (universal) Stanford dependencies [5], the universal Google
dependency scheme [14], the Google universal part-of-speech (POS) tags [17] and
the Interset interlingua for morphosyntactic tag sets [20].

The principles driving the UD syntactic annotation are of dependency and
lexicalism, meaning that syntactic words are the units of grammatical annotation,
as opposed to phonological or orthographic words. It is important to note that
UD offers a universal pool of POS tags, morphological features and dependency
relations that languages can choose from. This means that the tag inventory is
fixed and is meant to be used by all languages, but not all categories have to be
used in every languages [15].

2.3 Abstract Meaning Representation (AMR)
AMR is a formalism developed to capture relationships between semantic roles,
i.e. predicate-argument structure of a sentence. The output of annotating sen-
tences following the AMR framework, are directed acyclic graphs (DAGs). It is
widely accepted in the AMR research community to refer to the resulting graphs
as “AMRs”. We follow the same notation throughout this report.

2Some of these formalisms, such as DELPH-IN Minimal Recursion Semantics, Predicate-
Argument Structures and Prague Semantic Dependencies, are of the bi-lexical variety (whereby
the semantic representations have a one-to-one correspondence with words in the surface real-
isation) [16]. These formalisms, part of the Semantic Dependency Parsing (SDP) family, arose
as a response to the SemEval 2014 and 2015 Shared Tasks http://sdp.delph-in.net.

http://sdp.delph-in.net
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Figure 2.1 – Dependency tree and AMR of the sentence “They see the beautiful
house.”
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Figure 2.2 – Dependency tree and AMR of the sentence “They see the house as
beautiful.”

AMR abstracts away syntactical information in the surface realisations (POS
tags and syntactic dependencies). However, as seen in 2.1a and 2.1b, there can
be sufficient information at the syntactic level to help differentiate between two
sentences having similar words but with different meanings. Concepts in AMR
are made up of English words or phrases (nominals such as boy, girl, etc. and
verb senses), as well as different semantic roles associated with each of them, the
latter being drawn from PropBank3. In addition, AMR specifies at least 60 of
its own non-core roles4.

A unique feature of AMR (compared to other semantically-oriented annota-
tion frameworks such as RMRS) is the avoidance of multiple roots via the ability
to express predicate-arguments in the form of inversed roles. As a result, an

3PropBank is in turn, developed by overlaying an additional semantic role labelling layer
over verbs in the Penn Tree Bank [9])

4Such as :source, :destination, :path, :beneficiary, :accompanier, :topic, etc. For the detailed
list, see [11]
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AMR representation is simpler compared to other semantic formalisms such as
Minimal Recursion Semantics (MRS)5.

With this simpler structure in AMR comes increased intuitiveness, and the
effort of manually annotating sentences in a semantically-oriented formalism has
fallen, giving rise to a collaborative effort to build a bank (AMR Bank) of gold-
standard AMR annotations [3]. While AMR Bank currently comprises only
sentences in English, AMR is starting to become an attractive representation for
researchers when working on NLP tasks that involve the handling of semantic
information, including document summarisation and text generation [12].

Further, as pointed out by the author of [3], AMRs, based on their graph
structures, can easily be represented by triples (or sets of triples)6, which are
machine readable and allows for easy comparability between AMRs.

2.3.1 AMR Bank: The Little Prince

The AMR Bank7 is a limited distribution product of the Linguistics Data Con-
sortium. Access to the entire AMR Bank is by licence. However, AMR was
the subject of a SemEval Shared Task in 20168 and a component of AMR Bank
(human annotated AMRs for sentences in the English translation of The Little
Prince novel9 was released. We utilised this dataset (AMR Bank: The Little
Prince) for the development of our system. The dataset is in a single plain text
file containing more than 1,500 sentences, separated with a regular pattern.

We chose to work on the SemEval 2016 Shared Task 8 data as it was the same
dataset used in the development of the CAMR system [19], a transition-based
AMR parser10. It was released in 2015 and was one of the first AMR parsers.
The use of AMR Bank: The Little Prince, facilitates our use of CAMR as an
objective benchmark for evaluating our system’s performance.

2.4 Grew: Graph Rewriting for NLP
Grew is a graph rewriting tool for NLP. It has been written using the Ocaml11

programming language and can be used as a Python library. Grew has been used
for surface dependency syntax, deep dependency syntax and semantic represen-
tation but it can be used to represent any graph-based structure.

5Or its more widely developed variant, RMRS.
6The creators of AMR designed the initial framework with an intent to facilitate the manual

AMR annotations of sentences, and selected the PENMAN notation for this aspect. Examples
of how sentences are manually annotated in PENMAN notation can be found in the AMR
specification. However, for the purpose of this report, in which we focus on machine reading
and processing of AMR, we focus on graph and logical representations of AMRs.

7https://catalog.ldc.upenn.edu/LDC2017T10
8http://alt.qcri.org/semeval2016/task8/
9https://amr.isi.edu/download/amr-bank-v1.4.txt

10https://github.com/c-amr/camr
11http://ocaml.org/

https://catalog.ldc.upenn.edu/LDC2017T10
http://alt.qcri.org/semeval2016/task8/
https://amr.isi.edu/download/amr-bank-v1.4.txt
https://github.com/c-amr/camr
http://ocaml.org/
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The Grew library features a dedicated syntax for graph handling, where nodes
can be specified including their feature structures. A sample graph including lem-
mas, part of speech tags and UD relations for the sentence “I saw a magnificent
picture” can be seen below.
g = Grew.graph(“‘graph{
W1 [lemma=“I”, upos=PRON];
W2 [lemma=“see”, upos=VERB];
W3 [lemma=“a”, upos=DET];
W4 [lemma=“magnificent”, upos=ADJ];
W5 [lemma=“picture”, upos=NOUN];
W2 - [nsubj] -> W1;
W2 - [obj] -> W5;
W5 - [det] -> W3;
W5 - [amod] -> W4;
}”’)

The principle behind graph rewriting is in recognising certain patterns in
a graph and transforming the recognised part using a set of commands (e.g.
deleting or adding nodes and edges). In order to facilitate graph rewriting, Grew
uses rules. A rule is made up of a pattern and a list of commands.

A pattern may appear several times in the same graph and thus the same
rule needs to be applied to the graph multiple times. Furthermore, more than
one rule may apply to a given graph. In some cases, it is important which rules
are applied first. To allow for specifying the way rules are applied, Grew uses
strategies. When applied to an input graph, a strategy produces a set of graphs.
The simplest form of strategy is a single rule. Other types of strategies include:

• Sequence - Seq(S1, S2) - produces graphs obtained by applying S1 and
then S2 to a graph

• Pick - Pick(S1) - picks only one of the solutions of S1

• Iteration - Iter(S1) - apply S1 to a graph for as long as it can be applied

Grew also offers a package system which allows for the grouping of sets of rules
with a common objective. Packages are often used to group rules that should be
applied together and it is therefore possible to use the name of a package as a
strategy name.

Finally, while many rules can be written to model the general language rules
that can be found in grammar, there are some which depend on specific lexical
entries. To tackle this, Grew offers the possibility to create parameters for rules,
using lexicons. The lexicon format used by Grew is simple: the first line of a
lexicon specifies the fields used by the lexicon, and each of the following lines
corresponds to a lexical entry. The field values are separated by tabs.



Chapter 3

Design and Implementation

3.1 System Architecture
Our main system consists of five modules as shown in Figure 3.1. A part of the
pipeline (“Parser” and “UD to AMR”) covers the main objective of this project
and can be used independently. An additional set of modules (“Preprocessor”,
“AMR Graph to Text” and “Smatcher”) were developed in order to allow us to
evaluate the performance of our system against AMR Bank: The Little Prince,
the human-annotated gold standard.

3.2 Core System

3.2.1 Parser Module

Our parser.py module takes a sentence in natural language and creates its UD
parse tree. We rely on UDPipe12, through its Python library13, for parsing.
We chose to use the english-ewt-ud-2.3-181115.udpipe model for UDPipe.
Among the four UDPipe models available for English, it has the highest labeled
attachement score (LAS) and it is based on the largest corpus: 16,622 trees,
254,854 tokens - and we expect its wider coverage to have better performance. A
comparison between the four available UDPipe models for English can be seen
in Table 3.1.

The core function in our module lets the user pass a sentence and a sentence
ID. The latter is for writing the sentence ID into the CoNLL-U file created for that
sentence. In addition to this, the module provides a function which allows the
user to parse all sentences in a provided folder. The user is required to pass the
load_path and save_path, where the load_path points to a folder containing
text files, each consisting of one sentence in plain text, and save_path is the
path to the desired directory where the CoNNL-U files produced by the parser
should be saved.

12http://ufal.mff.cuni.cz/udpipe
13https://github.com/ufal/udpipe

7

http://ufal.mff.cuni.cz/udpipe
https://github.com/ufal/udpipe


3.2. Core System 8

Figure 3.1 – System Architecture

Model Trees Tokens LAS
english-ewt-ud-2.3-181115.udpipe 16,622 254,854 85.8%
english-gum-ud-2.3-181115.udpipe 4,399 80,176 83.8%
english-partut-ud-2.3-181115.udpipe 2,090 49,648 85.6%
english-lines-ud-2.3-181115.udpipe 4,564 82,816 78.3%

Table 3.1 – Trees and tokens per UDPipe model.

Throughout this chapter, we will present how our system behaves on a sample
sentence. From The Little Prince, we chose the sentence “Once when I was six
years old I saw a magnificent picture in a book, called True Stories from Nature,
about the primeval forest.” However, due to the size of the resulting output, we
have decided to only work through a part of this sentence for the report, namely
the fragment “I saw a magnificent picture.”

Given the sentence “I saw a magnificent picture.”, the parser will produce a
CoNLL-U file with the following content:

# newdoc
# newpar
# sent_id = 1
# text = I saw a magnificent picture.
1 I I PRON PRP Case=Nom|Number=Sing|Person=1|PronType=Prs 2 nsubj _ _
2 saw see VERB VBD Mood=Ind|Tense=Past|VerbForm=Fin 0 root _ _
3 a a DET DT Definite=Ind|PronType=Art 5 det _ _
4 magnificent magnificent ADJ JJ Degree=Pos 5 amod _ _
5 picture picture NOUN NN Number=Sing 2 obj _ SpaceAfter=No
6 . . PUNCT . _ 2 punct _ SpaceAfter=No

A dependency tree for the same can be seen in Figure 3.2.
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.
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root
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Figure 3.2 – Dependency tree of the sentence “I saw a magnificent picture”

3.2.2 UD to AMR Module

The ud_to_amr module takes a UD-annotated sentence stored in CoNLL-U for-
mat, similar to that produced by parser in subsection 3.2.1 above, applies a set
of rewrite rules to convert the sentence into AMR form. The module returns the
AMR in CoNLL-U format. We rely on the Grew system, through its Python
bindings (Grew Python), for loading, rewriting and saving the rewritten AMR
sentence. Our functions in this module are primarily convenience extensions on
top of Grew Python functions. It is designed as an interface point for the differ-
ent packages UDPipe, Grew, and Smatch (see subsection 3.3.1) and their outputs
that are utilised in the rewriting of the AMR.

The key function in the module takes as input: (i) the UD-annotated sentence
to be rewritten, (ii) the name of the file containing the GRS rewrite strategies,
as well as (iii) the name of the GRS strategy to be applied on the UD-annotated
sentence. It applies (ii) to the data loaded from (i). The save_data function
calls the amr_graph_to_conllu module (see subsection 3.3.2) to convert the
generated AMR in graph format into the CoNLL-U format and written to a
plain text file.

The ud_to_amr module comprises two main parts. The first (see subsubsec-
tion 3.2.2.1) is a lexical resource based on PropBank predicates enriched with
human-annotated semantic role labels. The second (see subsubsection 3.2.2.2)
is a Grew Rewriting System (GRS) containing a graph rewriting rule base con-
structed by us.

3.2.2.1 Lexicons

In natural language, we often have words with more than one meaning. This can
lead to ambiguity in the interpretation of sentences, and remains a challenge in
natural language processing. For example, without contextual information, it is
not possible even for listeners to completely distinguish the meanings of certain
sentences such as “John scanned the paper”, let alone doing so computationally.

AMR is intended to capture semantically-oriented information, including (i)
which sense of a predicate was used in the surface realisation of the sentence, as
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well as (ii) the semantic roles associated with these predicates. However, a UD
annotation does not provide word sense disambiguation. Also, in many cases
there is no one-to-one mapping between UD tags (or sets of UD tags) to AMR
tags (or sets of AMR tags). These hamper a direct transformation of a UD
annotation to AMR. However, these two problems can be addressed by the use
of lexicons.

Since AMR is based on PropBank14, it is the most appropriate choice for the
basis of our lexicon. A list of 8,733 frame arguments is available online15. Each
line of this file contains a predicate and its respective argument structure in the
format presented below.

...
indict-01 ARG0: accuser ARG1: accused ARG2: crime
...
indispose-01 ARG1: cause of unwillingness ARG2: unfit one ARG3: unwilling to
do this
indispose-02 ARG1: cause of illness ARG2: ill person
...

The notation structure is not consistent in the file and therefore cannot be
used by our GRS rules directly. In the majority of cases, ARG0 is the agent,
actor, cause or stimulus of the predicate. However, there exist predicates for
which this is not true. We discuss this aspect in further detail under section 5.1.

With this in mind, we devised a structure, based on the PropBank frame
arguments file, which can be used by the GRS rules and would help us resolve the
two main problems described above. This involved the enrichment of the lexicon
with finer-grained semantic role labels for each predicate sense. The annotation
procedure we used for the semantic role labelling enrichment is described in
subsection 5.1.1.

3.2.2.2 Grew Rewriting System (GRS)

To build our rule base, we started by analysing UD relations in order to find
mappings between them and the available AMR relations. Throughout this
process we used the UD Guidelines16, Grew-match17, and our corpus to guide us
in identifying the language phenomena to be captured by our system.

The structure for our rule base was inspired by the authors of [2]. The final
rule base we built consists of 183 rules, grouped in 10 strategies. It is structured
around the following:

• 3 files containing rules with unique structures:

– core_roles.grs - 32 rules

– core_roles_acl.grs - 4 rules
14http://propbank.github.io/
15https://amr.isi.edu/doc/propbank-amr-frames-arg-descr.txt
16https://universaldependencies.org/u/dep/index.html
17http://match.grew.fr/

http://propbank.github.io/
https://amr.isi.edu/doc/propbank-amr-frames-arg-descr.txt
https://universaldependencies.org/u/dep/index.html
http://match.grew.fr/
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– non_core_roles.grs - 19 rules

• 5 files containing rules with repetitive structures:

– cc_to_op.grs - 11 rules

– contrast.grs - 71 rules

– mark_to_non-core.grs - 5 rules

– poss_lemmas.grs - 6 rules

– remove_punct_safe.grs - 35 rules

• 1 file grouping rules into strategies:

– grs_amr_main.grs - 10 strategies

The files in the first two groups contain rewrite rules for transforming UD
structures into AMR structures. The files in the first group contain rewrite rules
which are aimed at unique structures. Each of the files in the second group
contains a set of rules, aimed at identical structures, but applying to different
UD tags within it. These were necessary in order to ensure we cover all the
different possibilities for a particular edge within the structure of interest.

The strategies contained in the grs_amr_main.grs file group the rules on the
basis of their intended functionality. For example, the rules Iter(remove_punct)
and Iter(remove_det) (aimed, respectively, at removing punctuation, and re-
moving the determiners “a”, “an” and “the”) are a part of the clean strategy.
This strategy is meant to be applied at the end of the rewriting process and re-
move the nodes that do not contribute to the semantic information represented
by AMR.

3.2.2.3 Example of UD to AMR in action

Starting from the UD graph in Figure 3.2, we can follow how the sentence “I saw
a magnificent picture.” is transformed when passing through the UD to AMR
module.

First, the rules for preparing predicates will fire. The only node that matches
a predicate in our lexicon is “see”. As shown in Figure 3.4, there are five entries
for it in the lexicon. One of the resulting graphs after applying the predicate
preparation rules, is the one shown in Figure 3.5a.

Following this, the rule pred_nsubj_obj (shown in Figure 3.3) will fire, trans-
forming the nsubj edge to ARGO and the obj edge to ARG1. Then, a rule for
changing amod to mod will produce the graph in 3.5b. Finally, a cleanup strat-
egy will remove the punctuation, determiners and the root relation to give the
final graph in 3.5c.
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rule pred_nsubj_obj(lex from "lexicons/subcat/test_lexicon.lp"){
pattern {
V[cat=VERB, lemma=lex.lemma, arg0=agent|actor|stimulus|cause,

arg1=patient|theme|experiencer];
nsubj_rel: V -[nsubj]-> NSUBJ;
obj_rel: V -[obj]-> OBJ;

}
commands {
del_edge nsubj_rel;
del_edge obj_rel;
add_edge V -[ARG0]-> NSUBJ;
add_edge V -[ARG1]-> OBJ;

}
} }

Figure 3.3 – GRS rule pred_nsubj_obj.

...
predicate arg0 arg1 arg2 ...
see-01 experiencer stimulus attribute ...
see-02 agent patient destination ...
see-03 agent - - ...
see-04 agent patient preposition ...
see-05 actor1 actor2 - ...

Figure 3.4 – Lexicon entries for the predicate “see”.
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Figure 3.5 – Transformations on the sentence “I saw a magnificent picture.”
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3.3 Development Tools/Pipeline

3.3.1 Evaluation Metric

To evaluate the performance of our rewrite system, we have to require an objec-
tive evaluation metric to compare our rewritten AMRs with the gold-standard
human annotated versions in AMR Bank. We used the semantic evaluation tool
formulated by AMR’s development team, smatch.py 18. See chapter 4. As men-
tioned in subsection 2.3.1, the primary factor guiding our selection of Smatch
as our evaluation tool was its use by the developers of CAMR. This is further
supported by its continued acceptance as an evaluation metric by the community
of researchers working with AMR19.

Our smatcher.pymodule takes the AMR developers’ smatch.py package (see
chapter 4) and uses it via shell with Python’s subprocess module. Two AMR
sentences in text format (annotated in PENMAN notation) are compared in order
to generate a similarity score between them. To ensure that the objectivity of
the evaluation score is maintained, we leveraged smatch.py in the way it was
provided by the developers of AMR. This meant that we had to convert AMRs in
Grew format to the text format that is accepted by smatch.py, as well as utilise
shell for control, as smatch.py utilises argparse.

3.3.2 AMR Graph to Text and CoNLL-U

When comparing AMR graphs, Smatch takes as input two text files, each con-
taining an AMR graph in its textual format. We have the gold standard AMR
graph in this format. However, our UD_to_AMR module produces AMR graphs
in Grew format. Therefore, we needed a rewriting module to convert a graph
in Grew format into a graph in text format. Our amr_graph_to_text module
provides a function which takes a Grew graph as input and returns its textual
representation. Since the function needs only a lemma, a concept (as produced
by the UD_to_AMR module) and a list of relations for each node, a simplified AMR
graph in Grew format containing only these features for the sentence “I saw a
magnificent picture“ is presented below. We have also presented the produced
text representation.

18https://github.com/snowblink14/smatch/blob/master/smatch.py
19For example, Lyu, Chunchuan and Titov, Ivan, "AMR Parsing as Graph Prediction with

Latent Alignment", 2018

https://github.com/snowblink14/smatch/blob/master/smatch.py
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[’1’: [’concept’: ’I’,
’lemma’: ’I’,
[]],

’2’: [ ’concept’: ’see-01’,
’lemma’: ’see’,
[[’ARG0’, ’1’], [’ARG1’, ’5’]]],

’4’: [’concept’: ’magnificent’,
’lemma’: ’magnificent’,
[]],

’5’: [’concept’: ’picture’,
’lemma’: ’picture’,
[[’mod’, ’4’]]]]

(s / see-01
:ARG0 (i / i)
:ARG1 (p / picture
:mod (m / magnificent)))



Chapter 4

Evaluation Measures and Results

4.1 Semantic Match, Smatch
We utilise the Smatch evaluation measure for assessing the performance of our
GRS. This measure and tool was developed by a group within AMR’s develop-
ers [4]. Smatch works by finding the maximum F1 score possible between two
AMRs. The Smatch metric views each AMR as a collection of triples, each of
which comprise a pair of concepts and the AMR relation associating them. By
measuring the degree of overlap of the triples set from each AMR, the Smatch
algorithm develops a view of the structural similarity of the two AMRs.

Smatch works with three distinct types of triples - instance, relation and at-
tribute triples. Instance triples tie nodes to IDs, one is present for each distinct
node. Relation triples correspond to AMR relations between nodes. Attribute
triples capture information about the properties of specific nodes - “TOP” (point-
ing to the root node), mode and polarity, to name a few. Triples are equal in
weight regardless of their type.

As our objective is to develop a GRS such that it is able to produce the
correct AMR of a sentence from its UD annotation, we chose to evaluate our
GRS by returning all possible outputs (see section 2.4) from the application
of our rules. For each sentence, we evaluate each of its outputs from our GRS
against the corresponding gold standard AMR from the AMR Bank. The output
AMR (from our GRS) with the highest Smatch score (F1) is recognised as our
system’s output. Subsequently, our reported system performance is computed
based on the set of best scores for each of the evaluated sentences.

This approach allows us to better evaluate the AMR production potential of
our system, and leaves the question of selecting the right output from the system
to other disambiguation methods (for example, finer GRS rewrite rules or with
the support of human annotators). The results of various tests on our system is
contained in the next section.

15
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Our Final GRS
Min Max Arithmetic

Mean
Precision 0.00 1.00 0.47
Recall 0.00 1.00 0.46
F1-score 0.00 1.00 0.46

Table 4.1 – Min, Max and Average Precision Recall and F1-score for our final
GRS.

Base Base+Lex Interim GRS
Min Max Arithmetic Min Max Arithmetic Min Max Arithmetic

Mean Mean Mean
Precision 0.00 1.00 0.27 0.00 1.00 0.41 0.00 1.00 0.44
Recall 0.00 1.00 0.28 0.00 1.00 0.44 0.00 1.00 0.45
F1-score 0.00 1.00 0.27 0.00 1.00 0.42 0.00 1.00 0.43

Table 4.2 – Min, Max and Average Precision Recall and F1-score for Base,
Base+Lex and Iterim GRS.

4.2 System Evaluation
We evaluated the quality of the rewritten sentences using the Smatch metric,
assuming the highest scoring graph for each sentence as the system output (see
section 4.1 above). We evaluated our system with two different sets of inputs.
The first set is the first 100 sentences of The Little Prince corpus and the second
set is the remaining 1,462 sentences of the corpus.

4.2.1 First 100 Sentences

We applied our GRS on the first 100 sentences of The Little Prince corpus. These
sentences range in length from three to 41 tokens, with the average sentence
length being 13.35 tokens. The highest average F-score for the first 100 sentences
of The Little Prince corpus, after applying our Final GRS is 0.46. Table 4.1
provides the minimum, maximum and average20 precision, recall and F1-scores.

In addition, we tracked the changes in the F-score of our system as we pro-
gressively added a test lexicon (see subsubsection 3.2.2.1 and section 5.1) and
more GRS rules. Table 4.2 provides an overview of these experiments.

The bars in red relate to results (Base) after application of our preparatory
GRS rules, those in blue relate to results (Base+Lex) after the addition of a
controlled experimental lexicon with complete coverage for the sentences , green
relates to results (Interim) after the application of our interim set of basic GRS
rules. As can be seen from Figure 4.1, the application of the controlled lexicon
begins to shift the F-score distribution rightwards (i.e. a better evaluation result
across the board for the 100 sentences). The addition of the interim rules, further

20We provide the arithmetic average precision and recall scores for a more granular view of
these scores over the 100 sentences, since the minimum and maximum for these are 0.00 and
1.00 respectively. We note however, that the sentences are of significantly varying lengths,
and as such, an arithmetic average of these precision and recall scores may not be a truly
informative measure.
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Figure 4.1 – Distribution of F-scores for rewrites of first 100 sentences of The
Little Prince, for Base to Base+Lex to Interim.

improved the evaluation results, as can be seen by a further rightward shift of
the distribution.

The following sections, analysing the rewritten sentences with the highest and
lowest Smatch F-scores, are based on the application of our Final GRS rules.

4.2.1.1 Best Outputs

While we get a maximum F1-score for some of the sentences, further investiga-
tion shows that these are sentences containing only one word each (“Yes,” and
“What!”). The only rewrite rule that applies to each of these is the one for delet-
ing punctuation. This explains why there is a perfect match between our result
and the gold standard.

The highest meaningful F1-score that we get is 0.88. It comes from the
sentence “Something was broken in my engine .”. The gold standard AMR for
the sentence and the AMR produced by our system are presented in Figure 4.4.

The AMR graph on the right is obtained by applying the following rules and
strategies:

• strategy prepare_predicates, which finds the sense “break-01” for “break”;

• rule remove_aux_pass, which removes the aux:pass, when the predicate
has an nsubj:pass relation too

• rule pred_nsubjpass, which is applied when there is a passive subject, and
transforms the nsubj:pass relation from “break” to “something” into an
ARG1 relation;
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Figure 4.2 – Distribution of F-scores for rewrites of first 100 sentences of The
Little Prince, for Base to Final.

Figure 4.3 – F-score for each sentence, change from Base to Final.



4.2. System Evaluation 19

(b / break-01
:ARG1 (s / something
:location (e / engine
:poss (i / i))))

(b / break-01
:ARG1 (s / something)
:obl (e / engine)
:poss (i / i))

Figure 4.4 – Gold AMR (left) and produced AMR (right) for “Something was
broken in my engine .”

• rule det_as_pers_pron, which transforms the det relation from “engine”
to “my” into a poss relation;

• strategy rename_poss_concepts, which transforms “my” into “i”;

• strategy clean, which removes punctuation, the case marker “in” and the
root of the sentence.

The gold AMR graph contains four nodes, which result into four instance
triples, three relations (between break-01 and something, something and engine,
and engine and i), which result in three relation triples, and one attribute triple
(break-01 being the root of the graph), making a total of eight triples. Similarly,
we have four instance triples, three relation triples and one attribute triple for
the AMR produces by our system, resulting in a total of eight triples. We have an
overlap of six triples (four instance relations - one for each of the nodes mapped
correctly, two relation triples - poss transformed correctly and ARG1 indentified
correctly, and one attribute triple - the root). Thus we obtain a precision of 0.88
and a recall of 0.88, giving us an F1-score of 0.88.

The reason why the obl relation is not transformed is that our system does
not treat the majority of oblique relations, as we do not have a reliable way to
differentiate between different types of nominal modifiers. Although there exists
a database of prepositions classified by their modification indicators21, there
remains significant overlap between many prepositions (e.g. the preposition “in”
can refer to a locational or a temporal modifier), and we did not expect the use
of it to substantially help in disambiguation.

4.2.1.2 Areas for Improvement

Using the Final GRS , the majority of the rewritten sentences have a Smatch
F-score between 0.30 and 0.50. Although this is an improvement over the base-
line, it is below that of the external benchmark we have chosen - CAMR which
reported a Smatch score of 0.63.

Our analysis identified three main reasons for the quality of the rewrites for
these sentences. Firstly, the coverage of our GRS rule base is incomplete and
our system is not able to rewrite for all the core and non-core roles in AMR.
Secondly, there are certain concepts which are predicates derived from nouns,
(see the example for the noun “drawing” in Figure 4.5) and we have yet to
develop our GRS to handle such cases.

21http://www.clres.com/db/classes/ClassTemporal.php

http://www.clres.com/db/classes/ClassTemporal.php
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... (t / thing
:ARG1-of (d / draw-01
...

... (d / drawing
:... (...

Figure 4.5 – The noun “drawing”, reified and represented in AMR Bank (left)
and without reification (right)

(s / smile-01
:ARG0 (p / person
:ARG0-of (h / have-rel-role-91
:ARG1 (i / i)
:ARG2 (f / friend)))

:manner (g / gentle)
:manner (i2 / indulgent))

(s / smil
:nsubj (f / friend
:poss (i / i)) :advmod (g /

gently)
:conj (i2 / indulgently))

Figure 4.6 – Gold AMR (left) and produced AMR (right) for “My friend smiled
gently and indulgently.”

Finally, we developed our GRS rules on the basis of their most prototypical
cases. Given that we are working with an automated UD parser, it is possible
that there may be variations in the parser output (either as a valid parse with a
different structure or an error), thereby preventing a GRS from firing, or wrongly
causing one to fire. Figure 4.6 presents one such case where the lemma “smile”
was parsed to be “smil” and thus did not match the predicate “smile” in our
lexicon.

One out of the 100 rewritten sentences have a Smatch score of zero. The
rewritten version of this sentence, together with its gold AMR counterpart is
presented below:

(c / cause-01
:ARG0 (a / amr-unknown)

(w / why )

Figure 4.7 – Gold AMR (left) and produced AMR (right) for “Why ?’

The sentence was not rewritten at all because it consists of a single wh-word
- “why”, and our GRS does not currently contain rules to treat wh-sentences,
which are represented in AMR with the "amr-unknown" concept22.

4.2.2 Remaining 1,462 sentences

Subsequently, we conducted two experiments to establish that our system can
be run across the entire corpus, as well as to evaluate the efficacy of our GRS on
the remaining sentences in The Little Prince corpus. As we developed our GRS
rule base (from Base to Final) using examples from the first 100 sentences of
the corpus, running the system on sentences other than the initial 100 somewhat
mimics the performance of the system on unseen data. The Smatch F-score for

22Except when the wh-sentence involves a relative clause, in which case inverse roles, i.e.
ARG-of, are used.
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Figure 4.8 – Distribution of F-scores for rewrites of remaining 1,462 sentences,
change from Base to Final.

the 1,462 sentences after applying our Final GRS is 0.38. The distribution of
the F-score for the 1,462 sentences, as well as the shift in the distribution from
the application of our Base to Final GRS can be found in Figure 4.8.



Chapter 5

Discussion

5.1 Semantic Role Labelling for Disambiguation
A lemma may have different senses that each have different argument structures
(in terms of having a different set of semantic roles specified). AMR inherits
PropBank’s semantic roles framework. The semantic role labels (SRL) in Prop-
Bank are shallow23 and its ARG0 and ARG1 roles relate to “Proto-Agent” and
“Proto-Patient” roles respectively[8]24. Using the argument structure of a predi-
cate, it is possible to:

• rely on UD syntactic and part-of-speech information to help with disam-
biguation25.

• specify the correct ARG0 or ARG1 when rewriting a UD relation to an
AMR relation26.

We identified a set of PropBank annotation guidelines providing a mapping
to VerbNet semantic roles27. Although this mapping is not present in the latest
version of the PropBank annotation guide, and contains only 27 SRLs (instead of
the 31 in VerbNet), we leveraged a subset of it to specify a set of SRLs that will

23PropBank has up to 10 main argument roles (ARG0 to ARG9) which are coarser-grained
compared to VerbNet’s (where 31 SRLs are specified).

24As an illustration, PropBank has two senses for the lemma indispose. The first of which
has no ARG0 role specified, and its ARG1, ARG2 and ARG3 roles are specified as agent,
patient and theme respectively. The second sense of indispose also has no ARG0 role,
but it only has ARG1, ARG2 specified, and these are specified as cause and experiencer
respectively.

25Using the lemma indispose, which has two senses in PropBank, a surface realisation with
indispose and which has an indirect object specified (prototypically linked to its parent with
an iobj UD relation) cannot refer to the second sense of indispose. Unlike with indispose-01,
the specificiation of indispose-02’s argument structure does not accept a third participant.

26For example, UD nsubj/obj dependency relations, together with a predicate’s argument
structure can allow us to select the correct rewrite of a relation to ARG0/ARG1. See for
example, the pred_nsubj_obj rule in our GRS within https://github.com/siyanapavlova/
AMR_annotations/blob/master/grs/core_roles.grs

27http://clear.colorado.edu/compsem/documents/propbank_guidelines.pdf

22

https://github.com/siyanapavlova/AMR_annotations/blob/master/grs/core_roles.grs
https://github.com/siyanapavlova/AMR_annotations/blob/master/grs/core_roles.grs
http://clear.colorado.edu/compsem/documents/propbank_guidelines.pdf
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provide us with a finer level of semantic roles. We select 25 of the more common
SRLs present in PropBank argument frames28. The objective is to obtain a
test version of the SRL-enriched PropBank lexicon29 that will allow us to test
the feasibility and efficacy of using a semantic roles-enriched PropBank lexicon.
Our set of evaluation results (see section 4.2) indicate that the use of such an
SRL-enriched lexicon enhances the performance of our GRS.

5.1.1 Annotation Approach

A total of 497 PropBank predicate senses were annotated jointly by both authors
of this report30. Initially, 500 senses were randomly sampled from PropBank’s
8,733 senses. The size of each sample is five (i.e. 100 samples were drawn
from PropBank). This was done to ensure that the common portion of the
annotation task will have contiguous blocks of senses from a single predicate
lemma31. Out of the 500 sampled senses, three of the predicate senses contained
ARGM32 roles which we did not plan to analyse and annotate at this stage and
were subsequently left out from the annotation task, therefore leaving 497 senses
for joint annotation.

Additionally, in order to simulate the performance of a GRS with a complete
SRL-enriched PropBank lexicon, the authors identified the predicates present
in the first 100 sentences of The Little Prince, and similarly added the SRL
annotations to this. This involved an additional 337 senses from PropBank that
were split between both authors for annotation.

We note that certain predicates in PropBank have multiple semantic roles
possible for a single argument. Therefore, there is a need for further disam-
biguation for these. One possibility is to rely on syntactic clues (such as type of
prepositions used). For instance, the predicate sense fill-06, meaning “to make or
become full, containing, up to capacity”, has an ARG1 role that can be filled by
one of these semantic roles: (i) container, (ii) patient, or (iii) theme. Depending
on whether it is concrete, whether it is structurally altered by the action of fill-
ing, and/or whether the ARG1 participant has been used intentionally etc, the
semantic role for ARG1 would be different.

28These are namely: actor1, actor2, agent, asset, attribute, beneficiary, cause, destination,
experiencer, extent, instrument, location, material, patient, patient1, patient2, product, recip-
ients, source, stimulus, theme, theme1, theme2, time, topic.

29A partial coverage of PropBank, and having an intermediate depth of SRLs that is between
PropBank and VerbNet.

30Both authors are first-year postgraduate (Masters) students in natural language processing
who are advanced English speakers (a native and a C2-level).

31For instance, we have board-02, board-03 and board-05 within the common annotation
task

32In PropBank, ARGM roles capture information about modifiers such as temporal or loca-
tional information. A PropBank lexicon annotated together with finer-grained ARGM roles,
together with UD’s modifier-class dependency relations, could help with disambiguation in the
rewriting process.
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5.1.2 Inter-annotator Agreement (IAA)

The IAA result for our annotation of the common 497 senses was 0.65. This
is computed with Cohen’s kappa as the agreement across the 1,273 argument
roles annotated33. This IAA result is broadly in line with IAA reported by other
recent studies [7] and [18], which also note the difficulty of achieving excellent34

annotator agreement in semantic role labelling. Additionally, we also computed
the Cohen kappa scores in the following to obtain more granular view of our
annotator agreement:

• The average of the agreement for each sense: 0.64. A deeper look in this
average gives us an idea of which predicates and their senses have the most
(and least) semantic role agreement between the annotators.

• The agreement within each PropBank argument role: 0.67. This provides
an understanding of the assignment of semantic roles within each PropBank
argument role. Heatmaps of the confusion matrices for PropBank’s ARG0-
ARG535 can be found in Annex A

5.2 GRS Identification with Clustering
We investigated a method to identify, in a computational manner, syntactic
patterns that are candidates as the bases for GRS rules. The objective of such
an approach is to obtain, from the labeled AMR Bank: The Little Prince data,
the minimal set of distinct UD syntactic patterns that identify a particular AMR
relation. This section summarises our learning and preliminary conclusions from
the investigation.

We identified the Grew, NetworkX, and scikit-learn packages as useful for
developing this phase of work. We believe that graph edit distance (GED) using
NetworkX together with scikit-learn’s spectral clustering could help discrim-
inate (and associate) between different (and similar) syntactic structures that
rewrite into a particular AMR relation.

5.2.1 Proposed Approach

We propose to segment the UD-annotated sentences of The Little Prince based
on AMR relations. Each segment is the set of sentences that contain a certain
AMR relation, according to the AMR Bank. We do this for the set of relations
within the AMR guidelines. For each AMR relation’s segment of sentences, we
propose to carry out the procedure in Table 5.1:

33Cohen’s kappa was selected as it is designed for measuring agreement between two anno-
tators accounts, which suits our case. It also accounts for chance agreement.

34Typically determined as being above 0.80 [10]
35Assignments to ARG6-ARG9 roles are rare within PropBank and none of the 497 senses

in the joint annotation task had roles specified in the ARG6-ARG9 range
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Figure 5.1 – Heatmap and confusion matrix of the inter-annotator agreement
across all arguments.
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Procedure for one AMR relation
Input: GREW UD graphs 1

1. Load UD graphs and corresponding AMR graphs in Grew2

2. Find one-to-one correspondence between AMR and UD
3. Generate NetworkX (nx) DiGraph objects
4. Preprocess by removing nodes and edges for functional POS and relations3
5. Get largest subgraph
6. For each decreasing step-size:

a. Prune subgraph by deleting leaf nodes 4

b. Compute pairwise similarity between all subgraphs with nx 5

b. Iterate through n_cluster range. For each n_cluster value:
i. Fit SpectalClustering algorithm and predict6
ii Evaluate cluster labels7
iii. Store Evaluation results

7. Return optimal step-size and n_cluster setting
8. Recover syntactic pattern. For the optimal step-size and n_cluster setting:

a. Retrieve the subgraphs for every cluster
b. Find the maximal common subgraph in each cluster
c. Reconstruct and return syntactic patterns

Table 5.1 – Procedure for Identifying GRS Candidates
1 Graphs with part-of-speech tags and dependency relations as node and edge attributes
respectively are a suitable representation for our case. These better capture the syn-
tactic patterns in UD to AMR GRS rules, as well as speed up the GED and isomor-
phism computations with node and edge matching in NetworkX.

2 These GREW UD graphs are for sentences whose gold AMR parses contain at least
one instance of the AMR relation being investigated.

3 We expect certain POS-tags and dependency relations (such as punctuation, reparan-
dum, goeswith and dep) will not contribute to discriminating between clusters of
syntactic patterns that relate to an AMR label. It may help to conduct a covariance
analysis between every dependency relation and POS-tag to identify insignificant de-
pendency relations/POS-tags (i.e. with the least total covariance across the board).

4 Only if the maximum depth (i.e. longest path from the root node) is more than the
current step-size.

5 We propose the use of graph edit distance (GED), with the primitive operations of
adding and deleting for nodes and edges, as well as appropriate cost settings (to bring
one graph into isomorphism with another). Although computing GED is an NP-hard
problem [1], this is not an issue for our procedure as the sizes of our UD graphs (and
their subgraphs) are small.

6 We believe SpectralClustering to be suitable for this task, because it effectively brings
a high-dimensional problem into a low dimensional one. It takes an affinity matrix
and identifies a segmentation of the samples that best "divide the data points [of a
dataset] "into several groups such that points in the same group are similar and points
in different groups are dissimilar to each other" [13].

7 As the clustering is done without gold labels, we anticipate using one or more of
the following measures (Silhouette, Calinski-Harabaz, and Davies-Bouldin scores) to
evaluate the quality of the cluster labels.
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5.2.1.1 Other Considerations

Although we have a working pipeline for generating the subgraph cuts, fitting
and evaluating the clustering algorithm, there are however, a few outstanding
aspects that have to be addressed. These include:

• Identifying the appropriate graph edit costs that help in meeting the clus-
tering objective - discriminate (and associate) unlike (and like) syntactic
patterns that produce an AMR relation from UD annotation.

• We expect that a single syntactic pattern can map to multiple AMR rela-
tions. Therefore, it is necessary to expand the procedure, by increasing the
subgraph stepsize, when the same syntactic pattern rewrite to more than
one AMR relation.

• Examine the application of the procedure on AMR relations that inherently
do not have a one-to-one matching with any token at surface realisation
level (e.g. reified roles such as :accompanier, :age, be-located-at-91 etc).

5.3 Characteristics of AMR

5.3.1 Annotation Flexibility

The AMR guidelines [11] allow annotators some freedom in lexical choice. This is
a complication for the rewriting process as we cannot simply rewrite by finding a
one-to-one mapping between the lemma of the surface realisation with the senses
in the PropBank lexicon. However, it is possible that other lexical resources (such
as ontologies like WordNet36 lexical networks such as SpiderLex37, or dictionaries)
can help to identify and rank potential candidates to select in the rewriting of
the surface lemma.

Besides the freedom in lexical choice, the current AMR guidelines also allow
flexibility in other areas. For instance, although AMR “prefers” representing
a sentence as a directed acyclic graph38, a small amount of cyclic AMRs are
considered legal and it is represented as so in the guidelines. Relatedly, although
AMR allows the conversion of non-core roles to core roles (reification) to avoid
acyclic graphs, it does not clearly prescribe when this should be done.

We are of the view that although this relaxes the annotation complexity for
AMR, it may be problematic for the development of systems to expand AMR. In
particular, the annotation flexibility means that multiple “correct” AMRs could
be made for a sentence. However, the AMR Bank only contains one single gold
representation for a sentence. This gives rise to a challenge similar to that faced

36https://wordnet.princeton.edu/
37https://spiderlex.atilf.fr/ a lexical resource developed by researchers at Computer

Processing and Analysis of the French Language (ATLIF) institute in Nancy, France capturing
Lexical Systems for both French and English

38See the “Cycles” section of the latest version of the AMR Specifications (v1.25) on https:
//github.com/amrisi/amr-guidelines/blob/master/amr.md and chapter 2

https://wordnet.princeton.edu/
https://spiderlex.atilf.fr/
https://github.com/amrisi/amr-guidelines/blob/master/amr.md
https://github.com/amrisi/amr-guidelines/blob/master/amr.md


5.3. Characteristics of AMR 28

in machine translation, regarding how to assess a representation for a given
meaning if there are more than one possible representation.



Chapter 6

Conclusion and Outlook

We built the pipeline for a system that takes the surface representation of a
sentence, parses it in UD and moves it towards AMR. Our system leverages
available packages including Grew and UDPipe, for natural language processing
with graphs and for parsing in UD respectively. We also developed a Python
program to facilitate the production of a semantic role labels (SRL)-enriched
lexicon. A test lexicon comprising 834 predicate senses (about 10 percent of the
senses in PropBank) was annotated with SRLs by the two authors of this report,
with an inter-annotator agreement of 0.65.

Our pipeline was run on the sentences of The Little Prince novel, and exper-
iments indicate that the inclusion of the test lexicon as well as a partial set of
Grew Rewriting System (GRS) rules base increases the F-score of the rewritten
sentences when compared to their gold representations. Our system was devel-
oped with the first 100 sentence of the Little Prince ans the application of our
final GRS, comprising 55 key (non repeating) rules, on the first 100 sentences
returned an F-score of 0.46. The application of the GRS on the entire Little
Prince corpus returned an F-score of 0.38. Given that our pipeline remains in
a development stage - with a partial set of GRS and lexicons, these results ap-
pear promising. A fuller set of GRS rules, SRL-enrichment of all the senses in
PropBank, and other lexical resources are expected to improve the performance
of our system.

Additionally, we also studied the feasibility of identifying, in a computational
manner, syntactic patterns that are candidates for GRS rules. We laid out a
proposed procedure for doing so with spectral clustering and using graph edit
distances. We also built a pipeline that would iterate through subgraph cuts and
cluster numbers in order to identify the optimal clusters and subgraph sizes for
identifying syntactic structures that correspond to a certain AMR relation. Be-
fore application of the procedure, further studies on the appropriate cost settings
for primitive graph operations that distinguishes between clusters of subgraphs
is needed.

29
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Figure A.1 – Heatmap and confusion matrix of the inter-annotator agreement
for ARG0.
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Figure A.2 – Heatmap and confusion matrix of the inter-annotator agreement
for ARG1.
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Figure A.3 – Heatmap and confusion matrix of the inter-annotator agreement
for ARG2.
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Figure A.4 – Heatmap and confusion matrix of the inter-annotator agreement
for ARG3.
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Figure A.5 – Heatmap and confusion matrix of the inter-annotator agreement
for ARG4.
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Figure A.6 – Heatmap and confusion matrix of the inter-annotator agreement
for ARG5.
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