ntroduction

project aims to review the state-of-the-art in the field and experiment with several types of data and conversion
methods that offer transcriptions of Out-of-Vocabulary words (OOV).
oov words: words not contained in the reference dictionary of the speech recognition system.

Why? The size of the reference vocabulary is not limitless Why are they a problem?

- OOV leave parts of the input unrecognized
- OOV confuse surrounding context;
- OOV are often important content words;
- OOV affect the performance of the system.

Solution: a system that does not depend on OOV

Data

Carnegie-Mellon University Pronouncing Dictionary
http://www.speech.cs.cmu.edu/cgi-bin/cmudict
134 K Words and their transcripion
APRAbet symbols
Pronunciation variants
Example:
ACERO AHO SEH1R OWO
ACRO(1) AHO SYEH1 ROW

Graphemes	Phonemes	$\underset{\substack{\text { leng } \\ \text { lengh }}}{\substack{\text { and }}}$	Phonemes /word	Pronunc. / word	Words in train	Words in tes
27	39	7.5	6.3	1.06	106.873	12000

Transcribing Out-of-Vocabulary words

Elena Khasanova

University of Lorraine, IDMC, 2019

M1 NLP

Basis: train a joint-sequence model with Sequitur trainable grapheme-to-phoneme converter up to 7 -grams

Solution 1. Dictionary lookup in n-best lists
Output n-best options for each word
Select the best found in the reference vocabulary
-Compute the recall
Solution 2. Apply character-based language mode
mplemented and trained character-based n-gram model with Kneser-Ney smoothing
counts for the n-grams from the n-grams of he desired length to unigrams, calculate the lambda parameter, store it in the model:

$$
\lambda\left(w_{i-1}\right)=\frac{d}{c\left(w_{i-1}\right)}\left|\left\{w: c\left(w_{i-1}, w\right)>0\right\}\right|
$$

Obtaining probability $P($ ch/hist):
start with the highest order n-gram
While not hist.
decrease hist, back off to lower order n-grams. Recursively compute the probability according to the formula

Select the best conversion option for each word in the tes set:

Experiments
Solution 2. Trying all word boundaries
-insert a word boundary symbol at every possible place in the

- for each pair of words
- perform the conversion with Sequitur trained on single words compute the probability of a word according to the language model
- compute the joint probability of two words
-select the best sequence
- write the best sequence into a file
check if the resulting words are contained in the vocabulary use the language model

Multiple words input

-Try all permutations of substrings on
(1) phonemic sequence / (2) converted letter sequences

- for each group of words:
- perform the conversion with Sequitur trained on single words for (1), skip for (2)
obability of a word according to the language
compute the joint probability of a group of words
-select the best sequence
check if the resulting words are contained in the vocabulary use the language model

Conclusion

- Kneser-Ney character-based language model helps to decrease error rate by $10-121 \%$;
- ror rate dops so to the average word length;
- 5 to 10 conversion results seem to give the best variation improve accuracy;
-The model trained with
a word boundary helps to determine it in
-The model trained with a word boundary does not seem to be efficient in handling conversions;
- Trying all possible word boundaries is time and memory consuming and doesn't seem to be promising.

Refernces

Ney H. Bisani M. "Joint-Sequence Models for Grapheme-to Phoneme Conversion". In: Speech Communication (2008). doi 10.1016/i.specom.2008.01.00

