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Connective POSToken Only Token and POS

Previous Tri-grams Global Results

Feature-Set MultiNB Percep PA LR

Conn Token 83.20 80.40 83.04 83.82

Conn POS 72.09 71.60 72.09 72.09

Tok, POS 55.68 83.39 82.15 82.44

Prev 3 tri-grams 66.39 62.53 65.25 69.59

Next 3 tri-grams 72.02 56.95 64.28 67.52

Prev 3 POS 64.35 64.44 58.43 76.59

Next 3 POS 69.70 69.25 65.91 70.08

Global Results 63.38 62.20 61.54 62.63

Averaged f1 by 
classifier

63.35 68.85 69.08 73.10

Data Set PDTB Sections Connectives Annotated
Train 2-21 14,719
Dev 22 680
Test 23 923

Total 16,322

Data Set Negative Positive Total

Train 12,933 14,737 27,670

Dev 588 680 1,268

Test 733 924 1,657

Total 14,254 16,341 30,595
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Discourse Connective Identification

Penn Discourse TreeBank (PDTB): Largest 
corpus annotated for discourse relations

Shallow Discourse Parsing (SDP): Automatic detection of 
predicate-argument relation between spans text (called 
shallow as it does not correspond to document-level tree-
like structures).

Discourse connective: The semantico-pragmatic link 
between two spans of text

Connective identification: The identification of whether a 
word form is in discourse use.

Objectives: Train predictive models in absence of 
syntactical information derived from tree-parses, making 
use of the following features:

• Lexical information: word form which lexicalizes the 
connective (Connective token)

• Gold POS information from PDTB annotation

• Lexical and POS information of window of 3 tokens prior 
to and following connective token

• Accumulate a set of 100 connective token-types 
annotated in PDTB

• Label positive or negative according to PDTB annotation
• Train a binary classification model on the following 

features:
1. Connective token itself
2. Connective POS tag
3. Trigrams of the 3 previous tokens from the 

connective
4. Trigrams of the 3 tokens following the connective
5. POStags of the 3 previous tokens from the 

connective
6. POStags of the 3 next tokens following the 

connective
• Stack feature sets 1 and 2 only, as well as the ensemble 

of the 6 features on the four models:
• Multinomial Naïve Bayes (MultiNB)
• Perceptron (Percep)
• Passive Aggressive (PA)
• Logistic Regression (LR)
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And thanks to the university of Lorraine department IDMC 
for affording us the opportunity to carry out the project.

• Re-work approach to pre-processing
• Do similar experiments on a predicted setting with the 

use of different POS taggers and syntactic parsers to 
train system for out-of–domain application

• Develop a point-wise (per-connective) classifier
• Introduce a neural network
• Experiment on other sub-tasks of Shallow Discourse 

Parsing

Dev set POS tag Distribution

Conclusions about results

• Connective token itself performs best compared to 
other isolated features or global feature-set

• POS information, when added, significantly increases 
Perceptron performance, but decreases Multinomial 
NB

• In the specific context of our modeling of the task, n-
gram and POS information of 3 previous and following 
tokens only introduce noise to the model

• Logistic Regression performs best overall

Conclusions about approach:

• Performance may have been compromised due to 
difficulties in conforming PBTB counts during pre-
processing

• More sophisticated feature engineering needed to 
increase performance

Tuned Hyper-parameters:
• Multinomial NB: Alpha increments of 0.04 from 1 to 3
• Passive Aggressive: C parameter at 1, 10, 100, 1000
• Logistic Regression: C parameter increments of 0.04 from 1 to 4
• Perceptron: Alpha increments of 0.04 from 1 to 3

Evaluation:
• Ten-fold cross-validation using GridSearchCV
• Scores reflect best f1 of the grid


