
UniversitÃľ
de Lorraine IDMC LORIA

MSc Natural Language Processing – 2018 - 2019
UE 805 – Supervised Project

Anomaly detection with deep learning
models

Realisation report

Students:
Esteban Marquer
Prerak Srivastava

Supervisors:
Christophe Cerisara

Samuel Cruz-Lara
Reviewer:

Denis Jouvet

May 28, 2019





Contents

Introduction 1

1 Datasets and preprocessing 2
1.1 BULL-ATOS dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Los Alamos National Laboratory (LANL) dataset . . . . . . . . . . . . . . . . . 2
1.2.1 Source of the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Structure of the log lines . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.3 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.4 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.4.1 Percentile corpus . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.4.2 Day 7 and day 8 corpus . . . . . . . . . . . . . . . . . . . . . . 4

1.3 BAREM dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.1 Source of the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Structure of the log lines . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.2.1 General structure of the log lines . . . . . . . . . . . . . . . . . 7
1.3.2.2 Analysis of the dataset and descriptive statistics . . . . . . . . . 7

1.3.3 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.3.1 Calculating delta timestamps . . . . . . . . . . . . . . . . . . . 12

1.3.4 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Predictive deep-learning models 13
2.1 General informations on our models . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Predictive event models . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Character embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.3 Loss and model training . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3.1 Cross entropy loss and model output . . . . . . . . . . . . . . . 14
2.2 Deep Averaging Network (DAN)-based event model . . . . . . . . . . . . . . . . 15

2.2.1 Predictive DAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Performance on the BULL-ATOS dataset . . . . . . . . . . . . . . . . . . 16
2.2.3 Adaptation to the LANL dataset . . . . . . . . . . . . . . . . . . . . . . 16
2.2.4 Attempts to achieve better accuracy and to avoid under-fitting . . . . . . 16

2.2.4.1 Model with increased parameters . . . . . . . . . . . . . . . . . 17
2.2.4.2 Multi-line model with attention over lines . . . . . . . . . . . . 17
2.2.4.3 Improved models performances . . . . . . . . . . . . . . . . . . 17
2.2.4.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . 18



2.3 DAN and LSTM-based event model . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Long- and Short-Term Memory (LSTM) networks . . . . . . . . . . . . . 21
2.3.2 DAN and LSTM-based architecture . . . . . . . . . . . . . . . . . . . . . 21
2.3.3 Model performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Anomaly detection 24
3.1 Detecting anomalies using the loss . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Evaluating anomaly detection using labled data . . . . . . . . . . . . . . . . . . 24

3.2.1 Receiver Operator Characteristic (ROC) curve . . . . . . . . . . . . . . 25
3.2.2 Area Under the Receiver Operator Characteristic Curve (AUC ROC) . . 25
3.2.3 Use of AUC ROC on our data and results . . . . . . . . . . . . . . . . . 26

Conclusion and discussion 28
1 Conclusion on the realized work . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2 Personal conclusions on the project . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1 Esteban Marquer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 Prerak Srivastava . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Appendices 31

A BULL-ATOS dataset 33
A.1 Source of the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
A.2 Structure of the log lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
A.3 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
A.4 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

B Log lines distribution in the LANL corpus 35

C Detailed architecture of the DAN-based model 36
C.1 Initial single-line implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 36
C.2 Single-line improved implementation . . . . . . . . . . . . . . . . . . . . . . . . 38
C.3 Multi-line implementation with attention . . . . . . . . . . . . . . . . . . . . . . 40

D Detailed architecture of the DAN and LSTM-based model 42



Introduction

Logs are an important part of any computer ecosystem today but, to understand and make
future decision on these logs is an hard and important task. Deep learning has emerged as a
key player to solve this problem due to its state-of-the-art performance on major tasks related
to anomaly detection. Among those tasks, there is intrusion detection, denial of service (DoS)
attack detection, hardware and software system failures detection, and malware detection.

Our project centers on anomaly detection in large amounts of system logs, with very few
occurrences of said anomalies.

This project was preceded by a one month preliminary internship within the PAPUD project
[1]. Part of the data and code comes from the internship, including the BULL-ATOS dataset
(see section 1.1, page 2) provided by industrial partners of the PAPUD project.

Usually, when trying to detect anomalies, we train a classifier that detects if a log line
correspond to an anomaly or not. However, we can not efficiently train models to detect
anomalies due to the lack of said anomalies in the datasets. A viable alternative to a classifier
is a predictive model trained to model the "normal behaviour" of the log lines. Using this model,
we can detect anomalies as lines differing too much from the modeled "normal behaviour".

The goals of the project can be summarized in three points, which correspond to the three
chapters of this report:

• to explore multiple datasets of log lines (see chapter 1, page 2);

• to build predictive deep learning models to model the normal behaviour of log lines and
test them on the different datasets (see chapter 2, page 13);

• to explore methods proposed in the literature to detect anomalies using predictive deep
learning models (see chapter 3, page 24).

To realize this project, we used exclusively Python (version 3.7)[2], and more specifically the
deep learning-oriented library PyTorch[3]. We also used the Pandas[4] and Numpy[5] library
to manage raw data.

To train the deep leaning models we required huge computational resources, so we used the
computational cluster Grid5000[6] during the project.
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Chapter 1

Datasets and preprocessing

1.1 BULL-ATOS dataset

In the initial stage of the project we used data provided to us by industrial partners of the
project (BULL-ATOS [7]), which was used in a preliminary project as mentioned in introduction
(page 1). As we did not use it much during this project, we will not say much about this dataset
here, except for the pre-processing step, as it had an impact on the pre-processing of the LANL
dataset (see subsection 1.2.3, page 3). It is however described in a more extensive way in
appendix A (page 33).

1.1.1 Pre-processing

We try to apply as little pre-processing on the data as possible. The pre-processing was designed
in the preliminary project and works as a pipeline, pre-processing examples on-the-fly using
multiple computing threads. This was designed with the usage of large amounts of raw data in
mind, without storage of the pre-processed data.

This on-the-fly pre-processing worked with a low enough cost for the amount of data used
in the early stages of this project (around 10 million log lines).

1.1.2 Usage

This dataset was used to train the first implementation of the DAN-based model (see subsec-
tion 2.2.1, page 15).

1.2 Los Alamos National Laboratory (LANL) dataset

1.2.1 Source of the data

The Los Alamos National Laboratory (LANL) cyber-security dataset (publicly available, see
[8]) contains around one billion log lines which is generated over the span of 58 consecutive
days. The logs are about anonymized authentication information from Microsoft Windows-
based computers and servers [9].

Attacks are executed by a “Red Team” to produce well-defined compromise events. We refer
to the log lines corresponding to those attacks as Red Team Events or Red Lines.

A distribution of those Red Team Events is described in Figure 1.1 (page 3).
Additional information about the distribution of the log lines distribution can be found in

the figures of appendix B (page 35).
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Figure 1.1: Distribution of Red Team Events over the billion of log lines of the dataset

Timestamp 1

Source user C6@D1

Destination user U7@D2

Source PC C6

Destination PC C6

Authentication type Negotiate

Logon type Batch

Autentication orientation LogOn

Success/Failure Success

1,C6@D1,U7@D2,C6,C6,Negotiate,Batch,LogOn,Success

Table 1.1: Log line example from the LANL dataset [9]

1.2.2 Structure of the log lines

According to [8], the log lines are composed of the following elements: “time, source user@domain,
destination user@domain, source computer, destination computer, authentication type, logon
type, authentication orientation, success/failure”.

An example from the article [9] is presented in Table 1.1.

1.2.3 Pre-processing

The data is split into two files, one containing the log lines themselves and another containing
information allowing to identify the Red Team Events in the log lines file.

We do very little pre-processing on the data from the LANL database, with two very simple
processes. First, we normalize all the lines to a length of 128 characters, by removing the excess
characters and padding the shorter lines with a specific padding character. Then, we map of
all the characters to numbers using a pre-built character to number mapping, that we call
the dictionary. That dictionary maps unknown and rare characters to an Out-Of-Vocabulary
character, and defines the padding character as an extra character.
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Initially, the pre-processing was done on-the-fly, as described in subsection 1.1.1 (page 2).
However, even if very flexible, this method is dramatically slowing down the training process of
the model when the scale of the data increases. Thus, the datasets described in subsection 1.2.4
were completely pre-processed beforehand. The resulting data was stored in gzip-compressed
CSV files.

Together with those CSV files, TXT files containing the relative position of red lines events
in each dataset were produced to allow easy manipulation of the pre-processed data.

1.2.4 Usage

Models were trained on this dataset in an unsupervised manner, meaning the Red Team Events
labels were used only to evaluate the anomaly detection ability of the models (see chapter 3,
page 24).

We use this dataset to test our DAN model (see section 2.2, page 15) on intermediate- to
large-sized datasets with a simpler structure than the BULL-ATOS dataset we used previously.
The two original objectives leading to the use of this dataset were to use a simpler dataset to
improve our model, and to compare the performance of our model on the LANL and BULL-
ATOS datasets.

Two subsets of the whole dataset were used during the project.

1.2.4.1 Percentile corpus

The first one, designated as percentile, is composed of three subsets, built with randomly
selected slices of the last 40% of the data. This part of the data was chosen because it doesn’t
contain anomalies. The subsets are as follows:

• a training set, from line 970,000,000 to line 980,000,000 (about 1% of the whole dataset);

• a test set, from line 878,940,000 to line 878,950,000 (about 0.01% of the whole dataset);

• a validation set, from line 713,070,000 to line 713,080,000 (about 0.01% of the whole
dataset).

1.2.4.2 Day 7 and day 8 corpus

The second subsets of the whole dataset mimic, as strictly as possible with the available infor-
mation, the use of the LANL corpus in [9], to allow us to easily compare our models with the
ones presented in the article.

The data is spread across two days of recorded log lines (see Figure 1.1, page 3).
Day 8, the day with the most Red Team Events of the whole corpus (with 261 such events), is

used exclusively to analyze the anomaly detection ability of the models (see chapter 3, page 24).
It contains 19,374,680 log lines in total.

Day 7, the day just before day 8, contains only 1 Red Team Event, and is used for training
and evaluating the models. It is split into 3 sets: a validation set containing of the last 2,000
lines, a test set with the 2,000 lines right before those, and the last 19,390,276 lines composing
the training set.

Note that in [9] A. Brown et al begin the count of days at 0, so day 7 is the 8th day of the
record and day 8 the 9th.
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Date 2017-09-08

Timestamp (up to ms) 02:28:00,017

Server name CC74.Administration

Session ID no.session.id

Workflow ID no.workflow.id

Port address 0x7A26D608

Tag (undefined) UNDEF_______

Envoi de mail -Begin or -End Envoi de mail - End

2017-09-08 02:30:00,023 ERROR [stderr] (eService scheduler_ Worker-5)

[SEVERE] [CC74.Administration] [*** no.session.id ***]

[*** no.workflow.id ***] [0x3F584622] [UNDEF_______]

[Envoi de mail - End]

Table 1.2: Example of a log line from the BAREM dataset, among those which aren’t used to
train the model

1.3 BAREM dataset

1.3.1 Source of the data

We do not have much information about the provider of this dataset, except for the name of
the company (BAREM) and the confidential nature of the data. By looking at how the logs are
structured we can deduce that they are from an application using a client-server architecture.
The logs contain a lot of lines which are most likely not useful to train our model. The data is
in general quite varied, and have no pattern that is easily noticeable.

1.3.2 Structure of the log lines

First, the log lines showing no connection between a client and the server do not seem to contain
any useful information, so we do not use them to train our models. The lines are structured in
the 8 following fields: “date, time stamp (in ms), server name, session id, work flow id, port
address, tag, Envoi de mail-end or Envoi de mail-begin”.

The data we used to train our system follows a similar structure, with some additional fields:
“date, time stamp (in ms), server name, session id, work flow id, port address, tag, name of
the task executed by the application, the stack of all the tasks, Entry_Point or Exit_Point ”.
You can see an example of this structure in Table 1.3 (page 6).
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Date 2017-09-08

Timestamp (up to ms) 02:28:00,017

Server name CC74.Administration

Session ID no.session.id

Workflow ID no.workflow.id

Port address 0x7A26D608

Tag START_ACT__

Name of the task executed Home activity

Stack of all the tasks (separated by an CitoyenBRWorkflowInstance!

exclamation mark) homeWorkflowInstance!

hp_activity_instance_id

Entry or exit point (entree or sortie) entree

2018-06-06 07:53:41,090 ERROR [stderr] (default task-5)

[INFO] [CC74.TS.TransportsScolaires]

[wGjQrps5TRpcOnQhdXTnBlzE] [14ae7ddb06697d9578dadb77f8b76842]

[0x4999A60D] [START_ACT___] [Home activity]

[CitoyenBRWorkflowInstance!homeWorkflowInstance!

[hp_activity_instance_id] [entree]

Table 1.3: Example of a log lines from the BAREM dataset, among those which are used to
train the model
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Session_1 Workflow_1 Task_1

Session_1 Workflow_1 Task_2

Session_1 Workflow_1 Task_3

Session_1 Workflow_1 Task_4

Session_1 Terminated Workflow_1

Session_1 Workflow_2 Task_1

Session_1 Workflow_2 Task_2

Session_1 Ended Session_1 (Using session time out tag)

Figure 1.2: Example of a workflow Workflow_2 that is not terminated even if the session is
terminated

Session_2 Workflow_3 Task_1

Session_2 Workflow_3 Task_2

Session_2 Workflow_3 Task_3

Session_2 Workflow_3 Task_4

Session_2 Terminated Workflow_3

Session_2 Workflow_2 (Comes from Session_1) Task_3

Session_2 Workflow_2 Task_4

Session_2 Ended Session_2 (Using session time out tag)

Figure 1.3: Example of how Workflow_2 from Figure 1.2 can restart in Session_2 without any
reference to Session_1

1.3.2.1 General structure of the log lines

As represebted in Figure 1.2, Workflow_2 which is not ended but the session somehow ended.
So, this Workflow_2 can appear in other sessions and can continue there but without any
reference from which session it usually come from (see Figure 1.3).

1.3.2.2 Analysis of the dataset and descriptive statistics

An in-depth analysis of the dataset allowed us to rise the following points of interest about the
structure of the data.

• Every new session implies a new Session_ID but also a new Workflow_ID.

• Some sessions disappear without properly ending the ongoing session not the ongoing
Workflow_ID.

• In any ongoing session, a Workflow_ID which was not ended properly in previous sessions
can appear in the ongoing session without any reference to the session it started in.

• Some sessions do not have any Workflow_ID, and some do not contain logs (or actions);
those are empty sessions.
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We have done some statistical analysis on the BAREM dataset, leading to the following
plots.

• The Figure 1.4, Figure 1.5 and (page 9) present the relation between the total time per
session (which is addition of all the delta timestamps per log line, see subsubsection 1.3.3.1,
page 12) on the X-axis and the number of log lines per session on the Y-axis.

– The Figure 1.4 shows the session which doesn’t finish in a correct way or which
doesn’t have a SESS_TIMEOUT tag.

– The Figure 1.5 is dedicated to sessions that have ended correctly with an end session
tag.

• The Figure 1.6 (page 9) shows outliers among the sessions which have ended correctly
with end session tag (see Figure 1.5). The X-axis shows the delta time stamp when the
SESS_TIMEOUT tag occur in the outlier and the Y-axis the number of log lines per session.

• The Figure 1.7 (page 10) give the distribution of all the tags in the dataset. It is interesting
to note that there are total of around 200 session which have errors out of the 15,000
sessions of the dataset.

The tags like BUSINESS_ERR, SYNTAX_ERR__, EXCP_STA___, EXCEPTION__ are considered
exception tags.

• The Figure 1.8 (page 10) depicts the distribution of the number of log lines per session,
with the outliers on subplot (b) and the other sessions on subplot a().

This analysis did not allow us to find a particular pattern which can help us determine if a
session that a user have used to access the application can be called a successful session or not.
Thus, we cannot produce anomaly annotations on the log lines or the sessions without getting
further information from the source company.
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Figure 1.4: Session which have not ended correctly

Figure 1.5: Session which have ended correctly

Figure 1.6: Session which have ended correctly but are outliers
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Figure 1.7: Tag distribution in the whole dataset

(a) Main sessions

(b) Outliers

Figure 1.8: Distribution of the number of logs lines per session
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1.3.3 Pre-processing

Heavy pre-processing needs to be done in this database to extract only the relevant information
from the log lines we are interested to work with. The following points describe the sequence
of operation composing the pre-processing of the BAREM dataset.

• First, we remove the log lines which contain these strings ***no.session.id*** and
com.eservice.main. These strings denote when the server is not occupied or when there
is no client-server communication. After removing these log lines the log lines containing
relevant data are left. At the end of this step, we store the filtered data in a big TXT file.

• We then group the log lines by Session_ID. Of all the fields of the log lines, we have
only used the following: their Time Stamp, No.session.id, tag and name of the task
executed.

We store the log lines in the data structure described in Figure 1.9 (page 12). In the
structure, the data field Data_# stand for the name of the task executed. We join the
different fields of each log line into a single string using ˆ as a separator.

• We only keep log lines with more than 15 characters, because shorter lines do not contain
any relevant data according to our analysis.

• Then we process log lines containing the tags GET_RQ_START, PST_RQ_START, SESS_TIMEOUT
or EXCP_STA____. Because the data in these tags are either IP address or null, we replace
said data with the string ------ and include the corresponding lines in our final dataset.

• We also process log lines containing the tags EXCEPTION___, END_WRKFL___ and END_ACT_____.
We replace the data in those log lines by:

1. ------ for the EXCEPTION___ tag, which correspond to exceptions;

2. Terminated Workflow Id for END_WRKFL___ tag, instead of the workflow identifier
originaly contained in the data;

3. END_ACT for END_ACT_____ tag.

• Note that we keep the timestamp for every log lines because we will use it to calculate
the delta time stamp (see subsubsection 1.3.3.1, page 12).

• After doing the above steps we have the whole dataset. We create a dictionary as in
subsection 1.2.3 (page 3). We use a specific processing for some parts of the log lines:

1. for every tag in a log line, we consider the whole tag as one entity in the dictionary
rather than splitting it into characters;

2. the data and the timestamps are split into characters and processed by the dictionary.

• We normalize the log lines to a length of 165, because in-depth study of the dataset
showed that except for three outliers (two with 243 and one with 320), all the log lines
are less than 165 characters. If a log line is shorter, we add a padding character to make
it 165 characters long.

• Note that we do not use the time stamps when we create the tensor (see footnote 2,
page 14) for every log line. The timestamps are integrated later in the computation (see
subsubsection 1.3.3.1, page 12).

11



{
"Session_Id 1" : [ "∆ts ˆ Tag_1 ˆ Data_1", "∆ts ˆ Tag_2 ˆ Data_2", ...],
"Session_Id 2" : [ "∆ts ˆ Tag_1 ˆ Data_1", "∆ts ˆ Tag_2 ˆ Data_2", ...]

}

Figure 1.9: Structure of stored data (∆ts stands for delta timestamp)

1.3.3.1 Calculating delta timestamps

We calculate delta time stamps (the difference between timestamps) for every log line with
respect to the previous log line. Delta time stamps are strings of characters, so we use Numpy
library np.datetime64(str) to convert the timestamp string into manipulable time objects,
which then can be used to calculate the time difference between two logs. The timestamps are
in milliseconds.

Then we just calculate the difference in millisecond from its previous log lines and append
it to the tensor of that particular log line before feeding the data to the LSTM layer.

Finally, we normalize the timestamps using an simple normalization method called as min-
max feature scaling technique.

1.3.4 Usage

We can consider training on this dataset as unsupervised (because we have completely unlabeled
data), but the heavy pre-processing requiring human expertise makes it more semi-supervised.

Hence, our earlier task which was to predict if the user is satisfied with the usage of the
application or not satisfied is still on hold because we cannot find any particular pattern which
can distinguish if in a session that a user have used to access the application can be called a
successful session usage or not.

The data obtained from the pre-possessing is used to train the model based on the combi-
nation of DAN and LSTM, defined section 2.3 (page 21). As described in the subsection 1.3.3
(subsection 1.3.3) we group all the log lines using their session identifier.

Hence, each session is a group of log lines sharing a session identifier. The whole dataset
contains 14366 different sessions. We store the pre-processed data in a large file named as
prepro.txt. We use this file to feed the model with batches, each contains multiple sessions.

Those batches are converted into tensors and concatenated to the calculated delta times-
tamps.

The data is split into the following subsets:

• a training set, containing 70% of the sessions;

• a validation set, containing 20% of the sessions;

• a test set, containing 10% of the sessions.

12



Chapter 2

Predictive deep-learning models

2.1 General informations on our models
We used two models for the project. The first one is a direct implementation of the Deep
Averaging Network (DAN) presented in [10] (see section 2.2, page 15), while the other adds a
LSTM in the architecture (see section 2.3, page 21).

2.1.1 Predictive event models

As explained in the introduction (page 1), we can not efficiently train models to detect anomalies
due to the lack of said anomalies in the datasets.

The alternative that was chosen was to use predictive models to predict the normal behaviour
of the logs, and to detect the anomalies by comparing them to this normal behaviour.

To achieve this, we try to predict the next line of a sequence of log lines. We use two variants
of this approach during the project: predicting one log line using either the previous log line
or multiple previous log lines.

In [9], they call such models event models, as it models the sequence of events represented
by log lines.

2.1.2 Character embeddings

Until recently, the majority of neural network architectures used for textual Natural Language
Processing were typically used with word embeddings, which are real-valued vector represen-
tations of words. However, current literature shows increasingly (for example [9]) that mod-
els trained using character embeddings (real-valued vector representations of characters) can
achieve similar performance than with word embeddings. Also, character embeddings manage
out-of-domain data way better (it is way less likely to encounter an unknown character than
to encounter a new word). Thus, following the previous work on the PAPUD project (see the
introduction, page 1) and by the request of our supervisor, the models developed during the
project use character embeddings and character-level predictions.

This choice has repercussions on how the datasets are pre-processed (see chapter 1, page 2):
with word embeddings it is necessary to tokenize the log lines into tokens, decide on how to
process punctuation, . . . , while with character embeddings none of it is necessary.
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2.1.3 Loss and model training

In deep learning, we build models to achieve a variety of tasks. Each of those models produce
an output.

To achieve the expected results, we compare the produced output and the expected output.
A loss is a measure of the difference between the two. It is, in specific circumstances, called
the distance between the expected and produced outputs.

The training is the process of trying to minimize the loss, to obtain a model that produce
outputs as close as possible to the expected output.

To be able to minimize the loss, we need to be able to know the impact of each parameter 1

of the model in the loss, before updating them in order to reduce the loss.
The algorithm called gradient back-propagation allows us to achieve this.

2.1.3.1 Cross entropy loss and model output

The models we develop are trained to predict log lines; as we are using characters-level predic-
tions (see subsection 2.1.2, page 13), our models need to output a prediction on the possible
characters (the characters in the dictionary, see subsection 1.2.3, page 3) for each predicted
character.

In practice, we use cross entropy loss, coupled with a specific output shape for our model
predictions.

Cross entropy indicates the distance between what the model believes the output
distribution should be, and what the original distribution really is. [...] Cross
entropy measure is a widely used alternative of squared error. It is used when node
activations can be understood as representing the probability that each hypothesis
might be true, i.e. when the output is a probability distribution. [11]

As specified in the previous description, the output of our model must be a probability
distribution over the characters in the dictionary. There will be one such distribution per pre-
dicted character. Thus the output shape of our model: a two dimensional tensor2 of dimentions
number_of_predicted_characters and number_of_characters_in_the_dictionary.

Usually, we need to normalize the output of the model to obtain a true probability distribu-
tion using an operation called softmax. It is a “function that takes as input a vector of K real
numbers, and normalizes it into a probability distribution consisting of K probabilities” [12].

However, the PyTorch documentation specifies that their implementation of cross entropy
loss already integrates of a softmax [13], so our models do not explicitly implement a softmax.

1 Parameters (also called weights in some cases) are values involved in the computation of the output of any
machine learning model. The parameters are tuned during what is called the training of the model.

2 A tensor is a specific type of vector used in deep learning, which has properties allowing gradient back-
propagation.

14



Figure 2.1: DAN architecture applied on a sentence of 4 word embeddings (figure from [10])

2.2 Deep Averaging Network (DAN)-based event model

2.2.1 Predictive DAN

The Deep Averaging Network is an order-unaware architecture, fast to train and with perfor-
mance equivalent to state-of-the-art architectures on classification tasks [10, 14]. It is based on
the older Neural Bag-Of-Word (NBOW) architecture [15], another order-unaware architecture
typically used to represent sentences.

The DAN architecture is simple: it has few layers and contains no recurrence nor convolu-
tion. It only contains an averaging function over the input embeddings and a few hidden layers
(see Figure 2.1).

The strength of the DAN is its ability to amplify “small but meaningful differences in the
word embedding average” [10], allowing it to achieve state-of-the-art performance with, thanks
to its simplicity, a computational cost way lower than state-of-the-art architectures (for example
the LSTM, see section 2.3, page 21).

It is thus particularly adapted to our usage on the BULL-ATOS and LANL datasets (see
section 1.1, page 2 and section 1.2, page 2), as the short training time of the DAN architecture
allow us to take advantage the large amount of available data. Comparatively, other state-
of-the-art architectures like the LSTM concentrate on achieving high performance with low
amounts of data.

NBOW and DAN architectures are typically used with word embeddings (which are real-
valued vector representations of word). However, as explained in subsection 2.1.2 (page 13),
our DAN model uses character embeddings.

We use the description in [10] as a reference for our implementation of the DAN architecture.
However, we use a variant of the Pooling layer, as we use a max pooling instead of an average
pooling.

To apply this architecture to our prediction task, the output of our model is a representation
of a line.

An interesting feature of the model is its ability to adapt to inputs of different sizes (as it
first computes an average on all the input data). Yet, such a property was not exploited in this
project, and may be explored in future works.
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Figure 2.2: Accuracy of the DAN model on the BULL-ATOS dataset, with varying learning
rates

2.2.2 Performance on the BULL-ATOS dataset

The initial implementation of the DANmodel was a single line event model (see subsection 2.1.1,
page 13). It was implemented during the internship as a preliminary study and was updated
to integrate the necessary hidden layers. The full structure of the model and the number of
parameters is presented in appendix section C.1 (page 36).

The accuracy obtained while predicting only the most frequent character (namely the
padding character) is used as baseline (around 44% of accuracy) for the experiments on the
BULL-ATOS dataset. The result of those experiments is shown in Figure 2.2.

The best accuracy achieved on the BULL-ATOS dataset is nearly 90% on the validation
set and 92% on the training set. This result extremely encouraging, especially when compared
to our baseline of about half this accuracy: it shows the model manages to learn and is not
just randomly outputing characters or outputing only the most frequent character. Also, in
a more general (and subjective) perspective, achieving this accuracy with an order-insensitive
and barely tuned model is a good result.

2.2.3 Adaptation to the LANL dataset

When the DAN model was used as-is on the LANL percentile dataset, the performance was
comparatively bad: around 67% at best on the training set, and around 62.5% on the validation
set. When it was tested on the larger LANL day 7 dataset, the accuracy was similar, with how-
ever around 2% of improvement on the validation set. Also, as shown on Figure 2.3 (page 17),
there is no hint of divergence even after more than 50 epochs. This is most likely a typical case
of under-fitting, meaning the model is not complex enough to capture the complexity of the
data and thus have trouble to learn anything.

2.2.4 Attempts to achieve better accuracy and to avoid under-fitting

The most straightforward way to reduce under-fitting is to increase the number of parameters
of the model, another way being altering the architecture used. Those are most likely not the
only ways of reducing under-fitting, but those two ways were tested duringt the project.
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Figure 2.3: First accuracy results of the DAN model on the LANL percentile dataset

2.2.4.1 Model with increased parameters

To solve the under-fitting problem, the number of parameters of the model was increased from
1,089,920 to 42,084,416, by changing the size of the two hidden layers from 128 and 128 to
2,048 and 4,096 (see Figure 2.5, page 19). The full structure of this version of the model and
the detailed number of parameters is presented in appendix section C.2 (page 38).

2.2.4.2 Multi-line model with attention over lines

An additional modification was tested, but not extensively enough to provide conclusive evi-
dence on the performance. It was inspired by our second model based on a LSTM which used
more than 1 log line as input. The architecture was modified to allow any number of input
lines to predict a single line.

Also, we added an attention over the lines (see Figure 2.6, page 20). This attention allows
to weight each line depending on their content before merging them into a single embedding,
and may allow the model to select the most relevant lines among the provided lines. We did not
expect much from the attention, but still integrated it to the model because of the simplicity
of its implementation, its low computational cost and the supposed lack of negative impact it
could have on the performance of the model. At worst it would not deteriorate the performance
of the model, and could even improve it noticeably. More experiments are needed to correctly
evaluate the impact of this attention on the model.

The full structure of the attention-equipped model and the number of parameters is pre-
sented in appendix section C.3 (page 40).

2.2.4.3 Improved models performances

The two variants of the model were trained in parallel on the LANL day 7 dataset (see subsec-
tion 1.2.4, page 4). The single-line variant, which implements the architecture without attention
described in Figure 2.5 (page 19), is referred to as the 1-line to 1-line model. The multi-line
variant was tested with 5 log lines as an input, with a few different learning rates3, due to loss

3 The learning rate is a parameter of the training of a deep learning model specifying how much the model
changes at each training step. The higher it is, the faster the improvement of the model, but at the risk of
missing the optimal model state or having a loss explosion (see footnote 4, page 18).
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explosion problems4. We refer to this model as the 5-lines to 1-line model.
The result showed on Figure 2.4 are extremely close to the results on Figure 2.3 (page 17).

The accuracy hits 67% at best on the training set, and around 64.5% on the validation set
for the single-line model. However, the multi-line model, while more complex (and supposedly
more powerful), achieves an accuracy lower by around 2% on both sets. It seems that the
improvements we did on the model did not manage to improve its performance, nor to solve
the under fitting problem. Moreover, they increased the duration of the training (from 45
minutes to more than 3h per epoch), and in the case of the multi-line model, even deteriorated
the performance.

Figure 2.4: Accuracy results of the best 1-line to 1-line and 5-lines to 1-line DAN models on
the LANL day 7 dataset

2.2.4.4 Results and discussion

The tests on the multi-line model were not extensive enough to be conclusive, however the
results suggest that increasing the number of lines deteriorates the performance. Our hypothesis
is that the amount characters on which the max-pooling is done is too much for the model.

When analyzing the results obtained on the LANL dataset, we notice that the accuracy does
not improve much from the initialization in the under-fitting situations. It can be interpreted
as the model not managing to learn.

Also, as shown on Figure 2.2 (page 16), tuning the learning rate of a DAN with few param-
eters, can bring the accuracy from around 67% to above 90%.

By comparing these two results, it seems more likely that to improve the performance of
the DAN model, tuning the learning rate is a lot more effective than the parameter increase we
applied.

In conclusion, restoring the model with fewer parameters and extensively tuning the learning
rate is more likely to succeed in further improving the performance of the model on the LANL
dataset.

4 The loss explosion is the phenomenon of the loss constantly and rapidly increasing during training, and can
happen when the model is too complex or the learning rate is not well tuned.
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Figure 2.5: Architecture of the DAN model, with increased parameters
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Figure 2.6: Architecture of the 5-lines to single-line DAN model
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2.3 DAN and LSTM-based event model

2.3.1 Long- and Short-Term Memory (LSTM) networks

A Recurrent Neural Networks (RNN) is a type of neural network adapted to process sequences
of inputs. It keeps part of the information from an input to compute the next ones.

Long- and Short-Term Memory (LSTM) networks are an extension for RNN, which basically
extends their memory. Therefore it is more powerful than a standard RNN, and can manage
longer sequences of inputs (even if this property was not exploited in our setup).

LSTM enable RNN to remember their inputs over a long period of time. This is because
LSTM stores their information in an additional memory (called hidden state), that LSTM can
read, write and delete information from.

This memory can be seen as a gated cell, where gated means that the cell decides whether or
not to store or delete information (e.g if it opens the gates or not), based on the importance it
assigns to the information it is provided with. The assignment of importance happens through
weights, which are also learned by the model.

A LSTM is composed of three gates: input, forget and output gate. These gates determine
whether or not to let new input in (input gate), delete the information because it isn’t important
(forget gate) or to let it impact the output at the current time step (output gate).

2.3.2 DAN and LSTM-based architecture

The architecture of the model is shown Figure 2.8 (page 23). It takes two input lines and to
predict the next line, and consists of the following components in a sort of pipeline:

• an embedding layer;

• a max pooling layer;

• adding normalized delta time stamps (see subsubsection 1.3.3.1, page 12);

• a LSTM layer;

• a linear layer (somtimes called perceptron, or fully conected layer).

First, every character from the log line is transformed into embeddings (see subsection 2.1.2,
page 13) of 30 features by the embedding layer.

Then, similarly to what was presented for the DAN (see subsection 2.2.1, page 15), a max
pooling layer produces one single-dimentional tensor per line (so 2 tensors for the 2 input log
lines). Each of those tensors have a size of 30 features, same as the embeddings.

We then concatenate the timestamp of each log line to the corresponding pooling layer
output. Those two new tensors represent the pair of log lines.

We now have a sequence of 2 tensors of 31 values.
We pass this sequence to the LSTM, which has a single layer (even if PyTorch allows us to

easily stack multiple LSTMs), and has 10 hidden features in its hidden state. The output of
the LSTM layer is a sequence of 2 tensors of the size of the hidden feature (10 in our case). We
can consider this as a single 2-dimensional tensor of dimensions 2 and 10.

Before feeding the output of the LSTM to the linear layer, we perform a dropout with a
probability of 0.2. This means we randomly replace the values by 0; each value has a prob-
ability of 0.2 of being replaced. The dropped-out tensor is passed on to the linear layer,
that produces a single-dimensional tensor of size dictionary_length× log_line_length (with
dictionary_length the number of characters in the dictionary, and log_line_length the num-
ber of characters of our log lines). We reshape this tensor to a 2-dimensional of dimensions
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Figure 2.7: Accuracy results of the DAN and LSTM-based model

dictionary_length and log_line_length, to obtain a distribution over the dictionary for each
character as explained in subsubsection 2.1.3.1 (page 14). We can consider that we use the
linear layer as a way to produce a usable output from the LSTM output.

It is important that we are taking into account the timestamps, as this feature usually helps
the model to yield better results, but we are not predicting the timestamp of the target line.
The reason is, predicting the timestamp can be task which is just not useful to our needs and
is also irrelevant to our task.

2.3.3 Model performance

The performance of the model is calculated on the basis of the predictive accuracy percent-
age on validation and test sets. This accuracy takes into account the padding character (see
subsection 1.3.3, page 11). This may provide an artificial boost to the accuracy.

After doing 30 epochs we have achieved 84% accuracy on train set and around 82.5%
accuracy on validation set as shown on Figure 2.7. The data set taken for both validation and
test set are randomly picked.

LSTM architecture-based models are usually slow to train, and our model took 3 days to
train even with the small size of the dataset and the training algorithm optimizations (for
example, multi-GPU training).

The performance of the model seems to be satisfactory in terms of predictive ability as it can
predict 84% of the characters correctly. Howaver this usually include the padding characters
that we have used to normalize the log lines. It would be interesting to elaborate an accuracy
measure that excludes the padding characters, to obtain a “true” measure of the predictive
accuracy.
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Figure 2.8: Architecture of the 2-lines to single-line DAN and LSTM model
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Chapter 3

Anomaly detection

3.1 Detecting anomalies using the loss

In [9] they propose an out-of-the-box method to detect anomalies using predictive models.
They use the loss (see subsection 2.1.3, page 14) as an anomaly score for each line: they

perform a prediction pl for a line l, and compare the prediction pl and the true line l using
the negative log likelihood (NLL) loss NLL(pl, l). The NLL loss is extremely similar to the
cross entropy loss we use, as cross entropy loss is composed of a Softmax and a NLL loss (see
subsubsection 2.1.3.1, page 14).

As explained in subsection 2.1.3 (page 14) the loss can typically be interpreted as the
distance between the predicted log line and the true log line. The greater the distance, the less
likely it is for the true log line l to appear, so the farther the line l is from the standard behaviour
of the log line sequence. In other words, “less probable events reciev[e] higher anomaly scores”
[9].

To decide which lines are anomalies, it is necessary to put a threshold on the anomaly score
(or the loss). If the loss is above that threshold (the distance is greater and the threshold),
we consider the line as an anomaly. It wouldn’t make much sense to use an arbitrary thresh-
old in those conditions; instead, we test a range of different thresholds (see the next section,
section 3.2).

The only difference between the experimental setup of the article [9] and ours is that instead
of the NLL loss we use cross entropy loss (see subsubsection 2.1.3.1, page 14).

3.2 Evaluating anomaly detection using labled data: Area
Under the Receiver Operator Characteristic Curve (AUC
ROC)

To evaluate the procedure explained in the previous section (section 3.1, page 24), the authors of
[9] use the Area Under the Receiver Operator Characteristic Curve (AUC ROC). This procedure
allows to vizualise the performance of the model when using a range of thresholds. More
detail about the meaning of the Receiver Operator Characteristic Curve (ROC) are available
in subsection 3.2.1 (page 25).

Most of the following explanations on the ROC and the AUC ROC (subsection 3.2.1,
page 25) was taken from the clear and concise explanation by Sarang Narkhede [16]. Also,
in those explanations, we consider the intuitive meaning of the Area Under a Curve (AUC) as
kown.
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3.2.1 Receiver Operator Characteristic (ROC) curve

The Receiver Operator Characteristic (ROC) curve is one of the many representations of the
ability of a binary classifier1 to distinguish between classes. In our setting, the two classes are
anomaly and not anomaly.

“The ROC curve is plotted with [True Positive Rate (TPR)] against the [False Positive Rate
(FPR)] where TPR is on y-axis and FPR is on the x-axis.” [16] The TPR is the probability to
classify an anomaly as such, while the FPR is the probability to classify a non-anomaly as an
anomaly.

We plot those two values (TPR and FPR) for a range of decision thresholds.
Here are a few examples to understand the meaning of those points, written (TPR, FPR):

• at (1, 1) the classifier answers anomaly all the time (all the anomalies are correctly
predicted, and the non-anomalies are all labeled as anomalies); in other words it accepts
everything as an anomaly;

• at (0, 0) the classifier answers not anomaly all the time (no anomaly correctly predicted,
and no non-anomalies labeled as anomalies); in other words it rejects everything out of
the anomalies;

• at (1, 0) the classifier answers anomaly for all the anomalies and not anomaly for the
non-anomalies (it is a “perfectly exact” classifier);

• at (0, 1) the classifier answers not anomaly for all the anomalies and anomaly for the
non-anomalies (it is a “perfectly wrong” classifier); if we invert the classifier output, we
obtain a “perfectly exact” classifier.

Note that (1, 1) and (0, 0) are present in the ROC of any classifier (to our knowledge), and
represent the extreme values of the threshold.

3.2.2 Area Under the Receiver Operator Characteristic Curve (AUC
ROC)

“[AUC ROC] is a performance measurement for classification problem at various thresholds
settings. [. . . ] It tells how much model is capable of distinguishing between classes. Higher
the [AUC ROC], better the model is at predicting [if a line is an anomaly or not].” [16] It is a
way to interpret the ROC; you can refer to subsection 3.2.1 for an interpretation of individual
points.

An excellent model has AUC near to the 1 which means it has good measure of
separability. A poor model has AUC near to the 0 which means it has worst measure
of separability. In fact it means it is reciprocating the result. It is predicting 0s
as 1s and 1s as 0s. And when AUC is 0.5, it means model has no class separation
capacity whatsoever. [16]

Those cases are presented on Figure 3.1 (page 26).

1 A binary classifier is a classifier that differentiates between two classes. It is equivalent to distinguishing
between belonging to a class or not.
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(a) AUC of 1 (b) AUC of 0.7

(c) AUC of 0.5 (d) AUC of 0

Figure 3.1: Example of ROC of theoretical models and the corresponding AUC, plots taken
from [16]

3.2.3 Use of AUC ROC on our data and results

The use of AUC ROC require knowledge of the labels of the log lines (either anomaly or not).
For the LANL dataset, we use the red line events as anomalies, as explained in section 1.2
(page 2). We use the day 8 corpus from LANL to compute AUC ROC for the models.

For the two other dataset (BULL-ATOS and BAREM, section 1.1 and section 1.3, page 2
and page 5) we do not have labeled data, it is thus impossible to use AUC ROC on those
datasets.

The performance of a first model, trained on LANL percentile corpus for 55 epochs, is
presented Figure 3.2 (page 27). This model is the one presented in subsection 2.2.3 (page 16),
and achieve 67% of predictive accuracy during training and 62.6% of accuracy during validation.

On Figure 3.2 (a), the ROC indicates that the model tend to classify anomalies as non-
anomalies, and non-anomalies as anomalies (see subsection 3.2.1, page 25). We obtain a better
AUC ROC as on Figure 3.2 (b) if we invert the conclusions of the model. It is equivalent to
changing the use of loss higher than the threshold as anomalies to loss lower than the threshold
as anomalies.

The performance of the two improved models trained on LANL day 7 corpus, namely the
1-line to 1-line and 5-lines to 1-line models, are presented Figure 3.3 (page 27).

Those models are the ones presented in subsubsection 2.2.4.1 (page 17), and they respec-
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(a) Using loss higher than the threshold as anoma-
lies, as presented in [9] (AUC ROC: 0.31)

(b) Using loss lower than the threshold as anoma-
lies (AUC ROC: 0.69)

Figure 3.2: AUC ROC of the model trained on LANL percentile corpus for 55 epochs (prediction
accuracy 67%)

(a) 1-line to 1-line model (prediction accu-
racy 67%)

(b) 5-lines to 1-line model (prediction accu-
racy 65%)

Figure 3.3: AUC ROC of the model trained on LANL day 7 corpus for 15 epochs

tively achieve 67% and 65% of predictive accuracy during training.
The 1-line to 1-line model achieves an AUC ROC of more than 0.85, (0.15 more than the

model trained on LANL percentile). This improvement is most likely due to the proximity of
the day 7 to the day 8 dataset compared to the percentile dataset, increasing the resemblance
between the normal behaviour on the training and AUC ROC sets. The obtained AUC ROC
is still lower than the ones above 95% achieved by the models in [9], but for a much simpler
model like the DAN, trained for only 15 epochs moreover, this result is extremely encouraging.

The 5-lines to 1-line model achieves an AUC ROC of less than 0.6, (0.1 less than the model
trained on LANL percentile). Also, the ROC is almost the diagonal (see subsection 3.2.2,
page 25). Overall, this model is very bad for our detection task.

With a difference in prediction accuracy of only 2%, one is the best and the other is the
worst model we produced for anomaly detection.
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Conclusions

1 Conclusion on the realized work
To sum up what we achieved, we managed to accomplish all the objectives of the project. We
produced predictive models with satisfying performances, explored two datasets other than the
initial BULL-ATOS dataset and tested an out-of-the-box method to detect anomalies, achieving
good performance with this method. A beneficial part is that by using the same processes and
data that in [9], we allow comparability of our results with those of the article. However, we
test this method only on one of our datasets due to the lack of labeled anomalies for the other
datasets.

The main technical challenge for this project was the duration of the training of the model,
which is a standard difficulty in deep learning. However, the amount of data we had to process
was larger than usual in textual deep learning, so this point was intensified. Another challenge
was the handleing of the data itself, and more specifically the amount of said data, as for
the LANL dataset, the storage space required to partially duplicate the data made it a bit
troublesome to deal with the pre-processing.

We have at least 5 points we could improve in further steps of the project.
First, the DAN was not tested extensively on the LANL dataset, yet our results on the

BULL-ATOS dataset shows that we can greatly improve the results by altering the learning
rate (see Figure 2.2, page 16). Further experiments on the LANL dataset could thus bring out
the most out of the DAN architecture.

Second, the DAN and LSTM-based model (see section 2.3, page 21) was not tested with
the AUC ROC procedure (see chapter 3, page 24), as it was not trained on the LANL dataset.
It would be necessary to test this architecture with AUC ROC to be able to compare it with
the DAN-based model.

Third, we explored only a single anomaly detection procedure using predictive models.
There might be other interesting procedures presented in the literature. Also, we tested only
two model architectures, and it would be interesting to widen the range of architectures tested
for the PAPUD project.

Forth, the deep learning domain is ever-changing, and the specific area of log analysis is
very active. Thus there are always new articles on the subject, which could help improve the
results obtained and open new problematics.

Fifth and last point, there is always, in deep learning, a way to improve the performance of
the models. In future works, it would interesting to continue tuning the models we have and
training them to the limit to obtain better results.
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2 Personal conclusions on the project

2.1 Esteban Marquer

This project was very interesting for me, especially since it is the continuation of the internship
I did last summer (the one mentioned in introduction, section 1.1 and subsection 2.2.2, page 1,
page 2 and page 16). I appreciated deepening my knowledge about deep learning techniques, for
example with the AUC ROC procedure. Also, this project allowed me to improve my Python
coding skills.

I think this project matches the first year of Master program quite well, and is also a good
introduction to the second year. In my opinion, the most beneficial classes for the project
were those about corpus management, data science and machine learning. Those helped me
in the predicament I was in when dealing with the pre-processing of the LANL dataset, and
more generally helped me improve the quality of my use of the datasets. Moreover, the large
amount of classes using Python and the variety of code styles taught help increase my mastery
of python (and I noticed that the code I produced during the internship was far from being
“pythonic”). Aside from this, English classes allowed me to improve (hopefully) the quality of
my writing, making this report a bit clearer than what I could have written without them. To
conclude, I am satisfied with what I learned during the project, and would say I am proud to
have achieved the results we achieved.

2.2 Prerak Srivastava

So, to conclude this report I would like to say that the supervised project on the topic anomaly
detection using PyTorch helped in expanding our knowledge in the field of deep learning. Due
to this I gained knowledge about architectures like multi-layer perceptron, convolution neural
networks, DAN(Deep averaging network), LSTM, linear layers. Apart from this I also learned
some deep learning concepts related to the field of NLP which are like character embedding,
character level dictionary, max-pooling etc.

Because we have used PyTorch in this project I got a lot of understanding of how an PyTorch
works and how to build deep learning pipelines using this framework also I understood a bit of
hyper-parameter tuning and how to extract features from the textual data.

This project really helped me in improving my python skills because of large amount of
pre-proceesing task that I need to perform for the Barem dataset.

There are few classes in our MSc 1st year program like the data science one which helped
me to be good at using Python graph plotting library like matplotlib and to write clean and
documented Python code.

Not to forget I learned how to work as team and also with the help of our supervisors I got
an understanding on how to approach and bisect a problem and solve it using an deep learning
approach.

Hence, this project is a great inclusion in the 1st year of this MSc Program and helped us to
expand our knowledge in using the latest technologies and research methodologies in the field
of NLP.
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Appendix A

BULL-ATOS dataset

A.1 Source of the data

The BULL-ATOS dataset is a dataset taken from a preliminary work on the PAPUD project[1],
which was part of an internship last summer. The data was provided to us by BULL-ATOS
[7], one of the industrial partners of the PAPUD project.

This dataset consists of more than 400 GiB of compressed log files system log files from
BULL-ATOS servers (making it a confidential dataset). Due to the large amount of data
available, only a small subset of around 10 million lines of this data was used at the time.

The data from that dataset is confidential.

A.2 Structure of the log lines

The structure of the log lines in the dataset is similar to a lot of standard logging tools (like
the logging package in Python), with space-separated fields. However, the signification of
the fields was not explicitly provided with the data, and the structure presented in Table A.1
(page 33) comes from an analysis of the provided files.

Due to the confidential nature of the data, the example we present in Table A.1 (page 33)
has been altered.

Timestamp 1524463200

Date 2018 Apr 23

Time 08:00:00

User OOO

Process authpriv

Message type info

Message access granted for user root
(uid=0)

1524463200 2018 Apr 23 08:00:00 OOO authpriv info acce[...]ot (uid=0)

Table A.1: Log line example from the BULL-ATOS industrial dataset (the full line has been
abbreviated)
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A.3 Pre-processing
We try to do as little pre-processing on the data as possible. The pre-processing was designed
in the preliminary project and works as a pipeline, pre-processing examples on-the-fly using
multiple computing threads. This was designed with the usage of large amounts of raw data in
mind.

The complete pre-processing is split into the following tasks, each of those achieved by a
different comuting thread:

1. the Timestamp, Date, Time and User elements are removed, as they are redundant and
do not interest us for now;

2. hexadecimal numbers and memory addresses are replaced by a specific character, with a
different character for each possible structure of hexadecimal numbers (0x0005 will map
to <hex4x>, ac406005 to <hex8>, . . . );

3. all the lines are normalized to a length of 200 characters, by removing the excess characters
and padding the shorter lines with a specific padding character;

4. the characters are mapped to numbers using an automatically generated dictionary, sim-
ilar to what is presented in subsection 1.2.3 (page 3).

This on-the-fly pre-processing worked pretty well with a low enough cost for the amount of
data used in the early stages of this project (around 10 million log lines).

A.4 Usage
Multiple variations of the dataset have been created, with mainly alterations on the pre-
processing step and the length of the dataset.

All the dataset variations are generated from the raw data and are composed of three
subsets: a test and validation set of 2 000 log lines each, and a training set containing the rest
of the data.

As written in subsection 1.1.2 (page 2), those datasets were used to train only the first
implementation of the DAN-based model (see subsection 2.2.1, page 15).

We can consider the training done with this dataset as semi-supervised, as the pre-processing
step is tuned after a manual analysis of the data and the performances of the trained model.
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Appendix B

Log lines distribution in the LANL corpus
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Appendix C

Detailed architecture of the DAN-based
model

This appendix describes the layers and the dimension of the data at each of those layers, for
the three variants of the DAN-based architecture presented in section 2.2 (page 15). In the
following tables, multiple dimensions are written separated bi commas.

C.1 Initial single-line implementation

Layer Dimension of the data at layer

Input data (128 characters) N 128 characters

Character dictionary N , dictionary size 128, 64

Embedding layer (output E = 128) N , E 128, 128

Pooling layer (maxpool) E 128

Multilayer Perceptron (layer 1) h1 128

Multilayer Perceptron (layer 2) h2 128

Multilayer Perceptron (layer 3) N ∗ dictionary size 128 ∗ 64 = 8, 192

Reshaping N , dictionary size 128, 64

Softmax N , dictionary size 128, 64 (probability dis-
tribution over the char-
acter dictionary)

Table C.1: Single-line implementation of the DAN model for the BULL-ATOS dataset: size of
the data
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Layer Number of parameters of the layer

Input data (128 characters)

Character dictionary

Embedding layer (output E = 128) input dictionary size

output E

weights 64 ∗ 128

total 8, 192

Pooling layer (maxpool)

Multilayer Perceptron (layer 1) input E

output h1

bias 128

weights 128 ∗ 128

total 16, 512

Multilayer Perceptron (layer 2) input h1

output h2

bias 128

weights 128 ∗ 128

total 16, 512

Multilayer Perceptron (layer 3) input h2

output N ∗ dictionary size

bias 128

weights 128 ∗ 128 ∗ 64

total 1, 048, 704

Reshaping

Softmax

total 1, 089, 920

Table C.2: Single-line implementation of the DAN model for the BULL-ATOS dataset: number
of parameters
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C.2 Single-line improved implementation

Layer Dimension of the data at layer

Input data (128 characters) N 128 characters

Character dictionary N , dictionary size 128, 64

Embedding layer (output E = 64) N , E 128, 64

Pooling layer (maxpool) E 64

Multilayer Perceptron (layer 1) h1 2, 048

Multilayer Perceptron (layer 2) h2 4, 096

Multilayer Perceptron (layer 3) N ∗ dictionary size 128 ∗ 64 = 8, 192

Reshaping N , dictionary size 128, 64

Softmax N , dictionary size 128, 64 (probability dis-
tribution over the char-
acter dictionary)

Table C.3: Single-line implementation of the DAN model for the LANL dataset: size of the
data
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Layer Number of parameters of the layer

Input data (128 characters)

Character dictionary

Embedding layer (output E = 64) input dictionary size

output E

weights 64 ∗ 64

total 4, 096

Pooling layer (maxpool)

Multilayer Perceptron (layer 1) input E

output h1

bias 64

weights 64 ∗ 2, 048

total 131, 136

Multilayer Perceptron (layer 2) input h1

output h2

bias 2, 048

weights 2, 048 ∗ 4, 096

total 8, 390, 656

Multilayer Perceptron (layer 3) input h2

output N ∗ dictionary size

bias 4, 096

weights 4, 096 ∗ 128 ∗ 64

total 33, 558, 528

Reshaping

Softmax

total 42, 084, 416

Table C.4: Single-line implementation of the DAN model for the LANL dataset: number of
parameters

39



C.3 Multi-line implementation with attention

Layer Dimension of the data at layer

Input data (5 lines of 128 characters) 5, N 5, 128 characters

Character dictionary 5, N , dictionary size 5, 128, 64

Embedding layer (output E = 64) 5, N , E 5, 128, 64

Pooling layer (maxpool) 5, E 5, 64

Attention over the lines

Attention weights (1 weight per line) 5 5

Attention-weighted maxpool E 64

Multilayer Perceptron (layer 1) h1 2, 048

Multilayer Perceptron (layer 2) h2 4, 096

Multilayer Perceptron (layer 3) N ∗ dictionary size 128 ∗ 64 = 8, 192

Reshaping N , dictionary size 128, 64

Softmax N , dictionary size 128, 64 (probabil-
ity distribution over
the character dic-
tionary)

Table C.5: Multi-line implementation of the DAN model for the LANL dataset: size of the
data
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Layer Number of parameters of the layer

Input data (128 characters)

Character dictionary

Embedding layer (output E = 64) input dictionary size

output E

weights 64 ∗ 64

total 4, 096

Pooling layer (maxpool)

Attention over the lines

Attention weights (1 weight per line) input E

weights 64

total 64

Attention-weighted maxpool

Multilayer Perceptron (layer 1) input E

output h1

bias 64

weights 64 ∗ 2, 048

total 131, 136

Multilayer Perceptron (layer 2) input h1

output h2

bias 2, 048

weights 2, 048 ∗ 4, 096

total 8, 390, 656

Multilayer Perceptron (layer 3) input h2

output N ∗ dictionary size

bias 4, 096

weights 4, 096 ∗ 128 ∗ 64

total 33, 558, 528

Reshaping

Softmax

total 42, 084, 480

Table C.6: Multi-line implementation of the DAN model for the LANL dataset: number of
parameters
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Appendix D

Detailed architecture of the DAN and
LSTM-based model

Layer Dimension of the data at layer

Input data (2 lines of 165 characters) 2, N 2, 165 charac-
ters

Embedding layer (output E = 30) 2, N , E 2 ∗ 165 ∗ 30

Pooling layer (maxpool) 5, E 2 ∗ 30

Reshaping 2, 1, E 2 ∗ 1 ∗ 30

LSTM 2, Batch Size, Hidden Size 2 ∗ 1 ∗ 10

Reshaping 20 ∗ 1

Dropout (p=0.2)

Linear Layer N, Dictionary Size 165 ∗ 100

Table D.1: Multi-line implementation of the DAN and LSTM-based model
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