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Chapter 1

Introduction

Large vocabulary Automatic Speech Recognition (ASR) systems require a huge

amount of human transcribed speech data. Such speech corpora are either pur-

chased from dataset providers or obtained through a data collection process. In

either scenario, the costs of acquiring the labelled speech corpora are very high.

Recent efforts by the speech research community have led to significantly large

amounts of crowdsourced read speech corpora, such as LibriSpeech and Common

Voice Project by Mozilla [37, 1], which have been made available publicly at free

of cost. With these speech corpora, it is possible to build large vocabulary ASR

systems without much or any dependency on expensive speech corpora.

These ASR systems trained on read speech corpora perform well enough under

controlled conditions, but they have weaknesses when it comes to dealing with

conversational speech. Spontaneous speech is known to be disfluent by nature,

containing large amount of fillers, like “uhm” and “ehm”. Unfortunately, since

these ASR systems have never seen such events before in the training corpora,

presence of disfluencies can result in a high number of substitutions, insertion and

deletion errors, which can seriously hamper the quality of the transcription.

ASR systems must deal with them in order to significantly improve the quality

of automatic transcriptions. The best solution would to train a conversational ASR

system using only spontaneous conversational speech data. However, obtaining

these data is expensive and time-consuming, since large amount of time and labor

force are needed for recording and annotating.

Thus, the best arrangement is to automatically detect fillers, given just a small

amount of human transcribed dataset. The approaches which have been attempted

so far are typically based on sequence classifiers trained on features extracted di-

rectly from the speech signal or from the ASR output.
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This project will study methods for automatically identifying and annotating

fillers in several hours of un-transcribed conversational speech data by training

classifiers just using a small amount of human transcribed conversational speech

data. Usage of different types of classifiers will be attempted.

Improvement in ASR for conversational speech is the final objective of this

project, which is also part of the bigger study on “Weakly Supervised Learning for

Conversational ASR” under the COMPRISE project [2].

The rest of this report is organised as follows. Section 2 gives a background

on Automatic Speech Recognition and conversational speech. This is followed by

Section 3 describing the problem targeted by this project. Section 4 discusses the

prior work in this area. Finally Section 5 presents the action plan that will be

followed by this project.
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Chapter 2

Background

2.1 Automatic Speech Recognition

Automatic Speech Recognition is aimed at automatically converting spoken speech

into text with the use of a computer program. Denoting the speech input to the

ASR as X, the sequence of words at the output of the ASR as Ŵ, and W as the

possible word sequences to be recognized, ASR can be formulated as:

Ŵ = arg max
W

P (W)P (X|W) (1)

where P (W) and P (X|W) constitute the likelihoods computed by the language

modeling and acoustic modeling components, respectively, of the speech-recognition

system [22].

A typical ASR architecture is mainly composed of 5 major interrelated sub-

components: an acoustic front end, an Acoustic Model (AM), a Language Model

(LM), a lexicon and a decoder, as shown in Figure 1 [24].

2.1.1 Acoustic front-end

The first step to perform with an input audio waveform is to extract relevant features

that will be used for further analysis. This is what the acoustic front-end exactly

does. It converts the speech signal into appropriate features, which provide useful

information for recognition. These features are compacted into robust vectors which

are later supplied to the recognizer [24].

There are several different feature extraction methods, with the most used being

Linear Predictive Coding (LPC) and Mel-Frequency Cepstrum Coefficients (MFCC)

[24].
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Figure 1: Architecture of a typical ASR system.

Linear Prediction refers to the mechanism of using a linear combination of the

signal’s past time-domain samples to predict the current time-domain sample [12].

If the prediction is accurate, then a small number of past samples can be used to

code a long sequence of the signal. Linear predictive coding of speech signal is based

on linear prediction and at the same time tries to model speech as combination of

the sound source and a linear acoustic filter [35].

MFCC, on the other hand, is a representation derived from the short term power

spectrum of the speech signal, that is mapped into a Mel frequency scale, which

closely approximates the human auditory system’s response. The first step in MFCC

computation is to divide the signal in overlapping time windows ranging between 20

to 40 ms. Shorter time frame would not allow to catch the characteristics needed

in the audio signal; longer time frame would make the signal change too much

throughout it [21]. In the following step, a Hamming window [24] is applied to

each frame, to smooth the sound-wave [32]. After this smoothing, an N-points

Fourier Transform is applied on each frame to extract the power spectrum and the

constituent frequencies of the signal. Finally, triangular filters (from 20 to 40),

imitating the functioning of human’s cochlea, are applied. Last step is to take

the log of these filters and apply Discrete Cosine Transform to get a compressed

representation of the filters. Typically, the resulting 2-13 cepstral coefficients are

kept, while the others discarded for ASR [11].
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2.1.2 Acoustic Model

The Acoustic Model is used to represent the relationship between an audio signal

and the linguistic units (phonemes, syllables, etc.) that make up speech. AM

provides the score for P (X|W) in Equation 1.

Hidden Markov Model (HMM) [6], though old, is still one of the most commonly

used backbone of acoustic models. Other type of acoustic models include segmental

models [38], supersegmental models including hidden dynamic models [13], neural

networks [30], maximum entropy models [26], and (hidden) conditional random

fields [20].

HMM can be briefly explained using Figure 2 [42, 40]. Figure 2 shows the first

4 formants of the vowel /a/, divided in 3 segments. It can be seen that the middle

portion of the formants does not vary much, compared to the segments on the left

and on the right. These segments present more variation, since they are influenced

by neighbouring phonemes. So it is convenient to represent the 3 segments with 3

different statistical models. Each such segment is represented by a state in HMM.

Figure 3 illustrates the 3 different states in an HMM. So, each spoken word is

decomposed into a sequence of basic linguistic units (for example phones), which in

turn, have their own HMM, represented by a sequence of states. Individual states

of the HMM are typically modelled using a Gaussian Mixture Model (GMM) or a

Deep Neural Network (DNN) [40].

Figure 2: Trajectories of first 4 formants of /a/. On the left, a quasi-stationary

approximation of the real formants on the right can be seen.

Figure 3: Representation of HMM with 3 states.
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2.1.3 Language Model

The role of language modeling in speech recognition is to provide the value P (W)

in the fundamental equation of speech recognition, Equation 1 [22]. A language

model is a collection of constraints on the sequence of words acceptable in a given

language [24].

A basic and widely spread approach for LM, is n-grams. It is a stochastic

method which describes the probability of the occurrence of a given word, knowing

the previous context. The n can take any value ≥ 0, depending on how many words

in the previous context are taken into account. For example, if the probability of

a word depends purely on the identity of the immediately preceding word, then a

2-gram (bigram) model is used. Similarly, if the two previous words are taken into

account in the context, a 3-gram (trigram) model is used. The probability values for

each n-gram can be derived from counting its occurrences in the training corpora.

2.1.4 Lexicon

A lexicon is a list of tokens with associated phonetic transcriptions. It connects the

tokens that can be recognised by an ASR to the acoustic model. In most cases,

different pronunciations are associated to the same token, in order to catch as many

nuances as possible from a wide range of speakers. The technique used to achieve

this lexicon is called Grapheme-to-Phoneme (G2P) conversion. It is the task of

predicting the pronunciation of a word given its graphemic or written form [34]. It

can be done by hand or using different algorithms.

2.1.5 Decoder

The decoder merges together all the aforementioned sub-components of an ASR

system. The decoding process in a speech recognizer’s operation consist of finding a

sequence of words which best match the input feature vector sequence [22]. In other

words, the task is to find the most likely word sequence Ŵ given the observation

sequence X, and the acoustic model, lexicon and language model [24]. This task

will solve the fundamental equation of ASR seen before (Equation 1). This is a

search process, which is usually accomplished using the Viterbi algorithm [45].
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2.2 ASR Training

An acoustic model is created from a large speech corpus using special training

algorithms to create statistical representations for each linguistic unit. Training is

an iterative process. For instance, based on the Maximum Likelihood principle,

which means finding the model parameters that maximize the likelihood of the

observed data [33]. The training algorithm should be robust enough to generalize

to new and unseen samples, which also fits the nature of human speech.

Usually ASR systems are trained using human transcribed speech corpora, which

consist of speech recordings collected from human subjects speaking in a pre-defined

scenario and audio acquisition setup. Well-known corpora such as Switchboard [17]

are available and used for this purpose. However, such speech corpora may have

a high price and/or restrictive licenses. Moreover, for some languages, no large

transcribed speech corpus exists. It is therefore sometimes necessary to construct a

new transcribed speech corpus.

Crowdsourcing platforms are now being used as a new way to collect large

transcribed speech corpora, relatively quickly and easily, thanks to inexpensive set-

up and possibility for a large number of unskilled people to collect and annotate

speech data [23]. An example is the Common Voice Project [1] started by Mozilla in

2017 to create a database for ASR. Another alternative is the LibriSpeech corpus,

which consists of about 1000 hours of read English speech made freely available

online [37].

However, real-world conversational speech is highly spontaneous. Unlike read

speech, it contains pauses, disfluencies, silences and different speech rate and tempo.

Since most of these phenomenon are not seen in read speech corpora, ASR trained on

read speech corpora perform poorly on real-world conversational speech. In order to

address such mismatch in the train and test conditions, ASR adaptation techniques

have been proposed. ASR adaptation is performed on new speech datasets covering

new tasks or domains. Traditionally, Maximum a posteriori probability estimation

and Maximum Likelihood Linear Regression [22] techniques have been used for

ASR adaptation. However, more recently, Transfer Learning techniques have been

proposed [16].
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2.3 Conversational speech and disfluencies

Spontaneous speech is known to be characterised by disfluencies. Disfluencies in

speech can be defined as interruptions in normal flow of speech which make utter-

ances longer without adding semantic information [25].

The linguistic phenomenon of disfluency is very common and widespread across

all languages. It plays an important role in the structuring of speech and it is even

exploited to achieve some linguistic results, such as turn management [7]. Some of

them are even considered to be crucial in some pragmatic contexts. For example, a

disfluency can arise when a speaker tries to convey a difficult or important message,

so that the listener is prepared that some important or difficult matter is about to

come and can stay more focused [39]. However, high frequency of disfluencies in

speech can be a sign of some sort of speech disorder [10].

Disfluencies can appear under different forms: the most commons are filled

pauses (lexicalized and unlexicalized), repetitions, false starts and revisions [43, 36].

Repetitions can be used to gain time and recover the flow of the speech, intensify the

effect of an expression, or signal an upcoming problem in the speech [25]. Revisions

occur when the speaker slightly fixes his speech after an error. False starts are an

extreme case of revisions in which the speaker completely abandons the interrupted

speech and starts a fresh one [39].

Unlexicalized filled pauses are vocalizations (phonetically relevant, but semanti-

cally void), like “uhm”, “eh”, “ah” etc., which fill the time that should be occupied

by a word (generally in correspondence of hesitations, uncertainty or attempts to

hold the floor). The duration of vowels in a filled pause is longer than in fluent

vowels and have a flat pitch that lies across the median of speaker’s pitch. In ad-

dition, the energy of the filler is stable and falls towards the end of the utterance.

Some useful features for detecting them include duration, pitch, spectral features

and formants. In particular, the variation of the first four formant frequencies (F1,

F2, F3 and F4) with time can be used as indicators to detect them [25].
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Chapter 3

Problems

While ASR models built on crowdsourced read speech corpora can reduce the cost

of developing ASR systems, they are unable to handle disfluencies in spontaneous

speech. For instance, fillers, like “uhm” and “ehm”, will be mapped to other words

in the lexicon by an ASR trained on read speech. As a result, a sentence spoken

as “how to cook a pizza uhm margherita”, could be transcribed to “how to cook a

pizza home margherita”.

Moreover, since the ASR system makes predictions based also on its language

model, fillers affect correct recognition of words that are likely to follow each other.

As a result, disfluencies result in a high number of substitutions, insertion and

deletion errors, which can seriously affect the quality of the transcription [25]. Thus,

detecting these events in the speech has the potential to significantly improve the

quality of automatic transcriptions.

The optimal solution would be training a conversational ASR system using only

spontaneous conversational speech data. However, obtaining such data is not an

easy task. First, recording these data incurs in set-up difficulties and finding people

willing to perform this task. After recording process, manual transcriptions of the

audio recordings must be performed, which is also expensive and time consuming.

In order to factor out the detrimental effect of fillers, partially avoiding labor

intensive, expensive, time-consuming and error-prone tasks such as collecting speech

samples and annotating them, the best trade-off is to automatically identify fillers in

several hours of untranscribed spontaneous speech by training classifiers just using

a small amount of human transcribed conversational speech data. This project will

explore methods for automatically identifying and annotating fillers in spontaneous

speech with an objective to improve the quality of automatic transcriptions for

training spontaneous speech ASR.
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Chapter 4

Prior art

A number of different techniques have been proposed so far to detect fillers in speech

signals. These approaches can be categorized into 3 main groups: detection using

prosodic features, detection using lexical information, and detection using spectral

information.

4.1 Detecting fillers using prosodic features

This approach is purely based on using acoustic prosodic features (i.e. pitch, dura-

tion, and energy of the voice) to detect fillers.

Garg et al. propose an approach based only on prosody [15]. They try to detect

fillers automatically, given an audio signal using the following assumptions:

• The pitch of fillers lies along the median of the pitch of the user across all his

utterances

• A filler has a flat pitch

• The energy of a filler is stable or falling towards the end of their utterance

Although their approach works, it yields poor results for both coverage (proportion

of the actual fillers that were found) and accuracy (proportion among the detected

segments that were actual fillers). The errors raised can be sorted into two types:

false negatives (they occur when an instance is classified as non-filler, whereas it

actually is) and false positives (as opposition, they occur when an instance is clas-

sified as being a filler, whereas it is actually not). False negatives can be explained

because the pitch of the fillers has been finally found out not to be as flat as ex-

pected. Also, the duration of the fillers was often too small compared to what was
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expected. On the other hand, false positives have occurred because of some long

vowels at the beginning or at the end of the word have been classified as fillers.

In another study by Kaushik et al. [25], filler detection is based on the variation

of prosody (f0), and formants (F1, F2, F3, F4). Their hypothesis was that the pitch

of a filler is stable and lies around the median of speaker pitch, and similarly that

formants are stable as well. Stability of formants at a given voiced segment was mea-

sured by computing the Standard Deviation (SD) of each formant frequency within

each frame. The accuracy was not high enough, and the deletions, substitution,

and insertion errors were too frequent.

Some other studies related to prosodic features of the filler have been conducted,

even though they are not specifically focused on how to detect a filler in a speech

utterance. For example, Belz et al. [7] have found that filled pauses are more likely

to appear in monomodal condition (with no visual cue, e.g., in a phone conversa-

tion). This can help in order to know in what context fillers must be expected the

most. Also, they have found that a filler either having a rising or falling f0 contour

indicates that it is meant for holding the turn of the conversation. Conversely, a

filler having a more flat contour is more the consequence of a hesitation.

4.2 Detecting fillers using LM information

Another approach, which has been attempted, takes advantage of the information

provided by the LMs. In [41], detection, classification and segmentation of 4 dif-

ferent types of interval (fillers, speech, laughter, silence) in phone conversations is

tried with the aid of a 2-gram statistical LM to estimate a-priori the probability

that one category follows the other (like, e.g., it is more likely that a filler follows

speech, rather than laughter). The results show that such language models can

significantly improve the performance of purely acoustic feature based approach.

In [44], a combined approach for the detection of inter-word events (sentence

boundaries and four classes of disfluencies, including fillers) on spontaneous speech

transcribed by an automatic recognizer is also tried. The system combines prosodic

and Language Model sources. The authors claim that the results reported in this

paper could be further improved by including POS tagging or other syntactic in-

formation.
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Another approach, slightly different, but using the aid of LMs, is proposed in

[39]. This implementation relies on conditional random fields (CRFs) and LMs to

demonstrate the possibility to include fillers in written texts, producing plausible

disfluent utterances. This is an innovative formalization of a theoretical process of

disfluency composition and insertion in texts. The experiments conducted on this

implementation show that the proposed process is functional, although requiring

further improvements.

Lease et al. in [28] present, instead, a system for modeling disfluency in conver-

sational speech: fillers, repairs, and Interruption Points (IPs). For each sentence,

candidate repair analyses are generated by a stochastic Tree Adjoining Grammar

(TAG) noisy-channel model. A probabilistic syntactic language model scores the

fluency of each analysis, and a maximum-entropy model selects the most likely

analysis given the language model score and other features. Fillers are detected

independently via a small set of deterministic rules, and IPs are detected by com-

bining the output of repair and filler detection modules.

4.3 Detecting fillers using spectral information

So far the most successful approach is the one proposed by Brueckner et al. [9].

In this study, the effect of applying deep Bi-directional Long-Short-Term Memory

(BLSTM) Recurrent Neural Networks for detection and classification of fillers and

laughter is investigated. The task was to perform a frame-wise [19] classification of

phone-call recordings into three vocalization classes, including fillers. Using open-

source feature extractor tool openSMILE (covered in Section 5.2.2), frame-wise

low-level descriptors (LLDs) and functionals were extracted every 10 ms adopting

a frame size of 25 ms. As typical in ASR, frame-wise logarithmic energy and Mel-

Frequency Cepstral Coefficients (MFCC) 1–12 were computed (see Section 2.1.1).

After trying several different neural network architectures with various combina-

tions, they found that deep BLSTM models (created by stacking several BLSTMs

and by combining non-recurrent deep neural networks with BLSTMs) is the most

successful.
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Chapter 5

Action plan

In this section an attempt of the implementation plan that will be followed to achieve

the goals of the project will be presented, viz. automatic detection of fillers in

conversational speech. First, a note on the approaches that will be tried is presented.

This includes the features extracted from speech and the detection methods. This

is followed by the choice of software tools for speech feature extraction and for

developing the detection methods. Finally, the timeline planned for implementation

of this project will be presented.

5.1 Approach for detection of filler events in speech

5.1.1 Speech features

MFCC

Relevant features that characterize the input speech will be extracted through Mel

Frequencies Cepestral Coefficient (MFCC) technique. MFCC has been discussed in

Section 2.1.1.

Other audio descriptors

Apart from MFCC, different Low Level audio Descriptors (LLD) will also be ex-

plored as well as High Level audio Descriptors (HLD), which are commonly used

in other music and speech interpretation tasks [14]. LLD includes features such

as pitch, formants, voice quality features, as well as LPC. HLD typically include

functionals like mean, moments, percentiles, etc. calculated over the LLD.
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5.1.2 Detection and Classification

In this project, different classifying methods will be attempted.

Sliding window approach

The basic concept of this classifying method is pretty transparent. The signal will

be processed segment by segment. Each segment is called window. Once processed,

the window will slightly shift on the right such that all the windows processed

overlap. Each window processed is then classified as a filler, or any other speech

sound (see Figure 4) [29]. The length and shift of the window are important, and

they could influence fillers detection results.

Figure 4: Sliding window approach.

Sequence based classifier

A speech signal can also be classified using a Recurrent Neural Network (RNN)

[18]. In such networks, the output of a hidden layer depends on the output of

the previous layer. For example, if one wants to predict the price of a stock at a

given time, or wants to predict the next word in a sequence, it is imperative that
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dependence on previous observations is considered. RNN have indeed a loop. To

this extent, one can state that these kinds of networks have a memory.

There exists a variant of RNN, which is even more powerful, and is able to

use more context to make predictions: the Long-Short-Term-Memory Network [8].

LSTMs are explicitly designed to avoid the long sequence training problems of

RNNs. Remembering information for long periods of time is practically their default

behavior. Bi-Directional Long Short Term Memory Network (BLSTM) are a variant

of LSTM. Unidirectional LSTM only preserves information of the past, because the

only inputs it has seen are from the past. Using BLSTM will run the inputs in

two ways, one from past to future and one from future to past. What differs this

approach from unidirectional is that in the LSTM that runs backwards you preserve

information from the future and using the two hidden states combined you are able

in any point in time to preserve information from both past and future.

5.2 Tools

In the following sections, tools planned to be used in this project will be listed.

5.2.1 LibROSA

LibROSA [31, 3] is a powerful Python library used for audio analysis. It will be

used to extract MFFC features from the speech signal.

5.2.2 OpenSMILE

OpenSMILE is an open source software, whose main use is to automatically extract

features from a speech signal, and to classify them [4]. SMILE stands for “Speech

and Music Interpretation by Large space Extraction” [14]. It will be used to extract

the LLD and HLD features mentioned in Section 5.1.1.

5.2.3 Scikit-learn

Scikit-learn [5] is one of the most recognized and used Python library for machine

learning tasks. It is based on the SciPy library, as suggested by its original name

“SciPy Toolkit”. This library will be used to develop the classification and detection

methods discussed in Section 5.1.2.
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5.3 Corpora

Our experiments will be conducted using mainly two corpora: the English subset

of the VERBMOBIL corpus of human dialogs [27] and the LibriSpeech corpus of

read English speech [37]. The English subset of the VERBMOBIL corpus consists

of about 30 hours of human transcribed speech. This corpus will be divided into

3 subsets: one for training (filler detectors, classifiers and ASR systems), one for

validation and one used as test set. Automatic transcriptions of VERBMOBIL

corpus will be prepared using an English ASR pre-trained on 1000 hours of read

speech from the LibriSpeech corpus.

5.4 Timeline

The project is planned to progress through the following stages, during the period

January - May 2020.

• Month 1 (Jan 2020)

– Introduction to tools and corpora discussed in Section 5.2 and Section

5.3 respectively.

– Analysis of the errors obtained by ASR trained on LibriSpeech in filler

regions of the utterances from VERBMOBIL corpus.

• Month 2-3 (Feb - Mar 2020)

– Experiments on filler detection based on features extracted directly from

the speech signal.

– Exploration of different features, different models as well as model com-

binations.

• Month 4-5 (Apr - May 2020)

– Analysis on the (minimum) amount of annotated conversational speech

data required for effective learning of fillers.

– Improvements in ASR trained on automatic transcriptions of VERBMO-

BIL corpus, post proposed filler detection approach.

– Compilation of results, final report and defense preparations.
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