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Chapter 1

Introduction

This report presents our efforts and experiments for creating a classifier capable of

automatically identifying and tagging events in conversational speech.

This study can be set in the more general framework of improving conversa-

tional Automatic Speech Recognition (ASR) systems. Collecting speech datasets

for training ASR systems can incur high costs and difficulties, since large amount of

time and labor force are needed for recording and annotating. This problem is now

being partially mitigated by read speech corpora, thanks to crowdsourced projects

such as Common Voice Project by Mozilla [19], LibriSpeech [20] and others. Ob-

taining suitable conversational speech corpora is still difficult, and creating ad-hoc

datasets is an even more time-consuming and labor intensive task.

Spontaneous conversational speech is known to be characterized by the presence

of disfluencies. This widespread phenomenon, common in all languages, plays an

important role in structuring speech. ASR systems trained on read speech are not

robust enough to handle these events, which are not present in training corpora.

The best way to handle disfluency events in speech would be training a conversa-

tional ASR system exclusively using spontaneous conversational speech data, but

given the aforementioned issues, alternative solutions have been proposed. One of

them is automatically tagging events in speech, given a small amount of annotated

conversational speech data, which is the final aim of this project.

A number of different approaches have been proposed so far to address this

problem. Prosodic features have been explored [10, 12, 3] and information provided

by Language Model have been also exploited [24, 25, 22, 14]. However, the most

successful approach is the one proposed by Brueckner et al. [6], in which applica-

tion of deep Bi-directional Long-Short-Term Memory (BLSTM) Recurrent Neural

Networks (RNN) for detection and classification of events in speech is investigated.
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Our attempts are along the lines of the latter.

The rest of this report is structured as follows. In Section 2 our experiments on

sequence classification, made as preparation for the more complex sequence tagging

problem, will be presented. In Section 3 our efforts for tagging events in speech will

be presented. We will describe the methodology we followed, the pre-processing

that was necessary to be done on the corpus and our RNN approach. Finally we

will conclude with what we learned in this project.
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Chapter 2

Towards a sequence classifier on spoken

utterances

2.1 Motivation

Sequence classification task aims at predicting the category of a data sequence,

such as a text sentence or an audio-video signal [15]. For example, given a sentence

with a sequence of words, a sequence classifier can classify this sentence into 1-of-N

topics. Similarly, a sequence classifier on spoken audio utterances can be used to

classify the gender of the speaker. On the other hand, sequence tagging task aims at

assigning a categorical label to each of the members of the input sequence [15]. For

example, given a sentence with a sequence of words, a sequence tagger can assign a

part-of-speech tag to each word in the input sentence. Similarly, a sequence tagger

on spoken conversations can tag different speakers in the same audio recording [2].

The final aim of our project is to develop a sequence tagger for tagging filler

like events in spoken utterances using a modern RNN approach. However, before

engaging in this relatively difficult task we attempt sequence classification on spoken

utterances, as a simplification of our final problem.

We begin with the task of gender classification on spoken utterances to get

introduced to RNN based sequence classification. This task consists in extracting

relevant features from the spoken utterances and assigning a category, masculine or

feminine, to the whole input utterance.
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2.2 Gender classification on spoken utterances

We attempt gender classification on spoken utterances using a recurrent neural

network (RNN). RNN is a type of artificial neural network designed to handle

sequential data [11]. RNNs can be said to have a ‘partial memory’, as they make

use of history corresponding to past inputs in the sequence, in order to process the

current input in the sequence. This characteristic makes them more suitable for

processing sequences of arbitrary lengths, such as text and audio.

In order to understand an RNN model, let us consider an input sequence X =

{..., xt−2, xt−1, xt, xt+1, ...}. Here t denotes index within the input sequence, for

instance time steps in an audio-video signal or word in text. Typically, the input

sequence is passed left to right into the RNN and for each time step t a new hidden

state ht is computed based on the previous hidden state ht−1 and the current input

xt. The computation of hidden states ht in a typical Elman RNN [9] relies on the

RNN parameters WX and WH , which are linear transformation weight matrices

and used as follows:

ht = σ(WHht−1 +WXxt + bH) (1)

where, σ denotes the sigmoid non-linearity and bH denotes a bias vector included

in the computation. This operation can be illustrated using the block diagram in

Figure 1.

Figure 1: RNN architecture for sequence classification.

2.2.1 Model description

Figure 1 shows the architecture of our model for gender classification on spoken

utterances. Audio signal corresponding to a spoken utterance is converted to a se-
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quence of vectors of Mel Frequency Cepstral Coefficients (MFCC) [7]. These MFCC

feature vectors are extracted on short duration overlapping time frames, across the

temporal audio signal, and form the sequential input {x0, ..., xt−1, xt, xt+1, ..., xT}
to the RNN model. A hidden state hT is obtained at the end of the input sequence,

once all the T frames of the input sequence have been processed. The last hidden

state hT is fed into an output transformation layer, with weight and bias parameters

W Y and bY :

yT = W Y hT + bY (2)

Output yT is fed to a softmax function, ultimately resulting into probabilities pc for

each of the two output classes c, as:

pc = softmax(yT )c (3)

=
exp(ycT )∑
k exp(ykT )

(4)

Note that different spoken utterances are expected to have different time dura-

tion and hence different length T of the input sequence of MFCC feature vectors.

In order to facilitate faster and efficient mini-batch training [4] of our RNN model,

it is required to fix the length of sequences in each mini-batch. To address this issue

we fixed the length of a mini-match to that corresponding to the longest utterance

in our corpus. Input sequences shorter than this length are padded with zeros,

following the standard zero padding procedure.

2.3 Experiments and results

2.3.1 Corpus

We conducted our experiment using LibriSpeech Corpus [20]. We chose the test-

clean dataset which includes 5.4 hours of data distributed on 2620 audio files with a

sampling rate of 16kHz, comprising spoken utterances of 40 speakers (20 men and 20

women). The mean, minimal, and maximal duration of the audios are respectively

7.42, 1.29, 34.96 seconds.

2.3.2 Configuration

We used MFCCs extracted with 25 ms frame size and 12.5 ms shift. From each

frame we extracted a vector containing 13 MFCC coefficients. The number of MFCC
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vectors will be equal to the number of frames in the audio signal. Our RNN follows

the architecture shown in Figure 1.

2.3.3 Results

Among the 2620 audio files available, 80% (2096) were used for training and 20%

(524) for testing. We trained the model through 50 epochs, using mini-batches of

32 and a learning rate of 0.05. We used Cross-entropy loss function [8] and Adam

optimizer [13]. The model achieved a train accuracy of 59.68% and a test accuracy

of 58.75%. The confusion matrices relative to these accuracy values are shown in

Figure 2 and Figure 3.

Figure 2: Confusion matrix for the train set.

Figure 3: Confusion matrix for the test set.
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These results are not satisfying for a classification task, but they are still encour-

aging to the extent that we succeeded in implementing a sequence classifier built

over an artificial neural network, applied to spoken utterances.

This experiment taught us a lot, and was rewarding under different aspects.

First, we learnt to use some of the tools mentioned in our bibliography report, like

LibROSA [18], and the Python libraries PyTorch [21] and Scikit-learn [1]. Second,

we saw for the first time what MFCCs look like, and we gained a better understand-

ing of this feature. And finally, we got introduced to a neural network architecture.

All these elements will be further helpful in our attempt on tagging fillers in con-

versational speech.
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Chapter 3

Tagging events in speech utterance

Tagging events in conversational speech is the final aim of our project. There are

several different events occurring in spoken utterances that can be tagged, such as

laughter, cough, breathing, hesitations, noise, etc. In particular, in our project, we

focus on three different events: speech, fillers and silence. Similar to Section 2, an

RNN will be used to address this task.

3.1 Model description

The RNN model for sequence tagging is similar to the one for sequence classification,

discussed in Section 2.2. The major difference between the two is the way outputs

are obtained. In RNN for sequence classification, a single output is obtained after

all the frames in an input sequence have been processed, and a single label is finally

assigned to the whole input. Conversely, in RNN models for sequence tagging, an

output label is obtained for each frame.

To better understand RNN models for sequence tagging, let us consider an

input sequence X = {..., xt−1, xt, xt+1, ...}, where t indicates the index of a frame

in the input sequence. This input sequence is passed into the model. For each

time step t, a new hidden state ht is calculated based on the information carried

by the previous hidden state ht−1 and the current input xt. In addition to hidden

states, an output sequence O = {..., ot−1, ot, ot+1, ...}, with outputs corresponding

to each time frame, is obtained for sequence tagging. This operation is described in

Figure 4. In our task, input sequence X will be composed of MFCC feature vectors

extracted over short overlapping frames, while output sequence O will contain the

categories (speech, silence or hesitation) predicted by the model for each frame of

the input sequence.
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Figure 4: RNN architecture for sequence tagging.

3.2 Experiment setup

3.2.1 Corpus description

We conducted experiments using the CallHome English corpus of telephone con-

versations, made available by the the TalkBank project [26]. It consists of 120

unscripted telephone conversations between native speakers of English. The con-

versations last up to 30 minutes, with transcripts available for contiguous 5 or 10

minute duration segments. The transcripts are timestamped by speaker turns (as

shown in Figure 5). Timestamps are of form begin end, where begin and end are in

milliseconds.

Figure 5: Sample of a transcript of a conversation from CallHome.
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The corpus is accompanied with a set of transcription rules, that help us un-

derstand and process the data. In particular, the finite set of hesitation sounds

used in the transcripts is provided, which will allow us to feed our model with

well-annotated data.

3.2.2 Preparation for model training

As mentioned in Section 3.2.1, transcripts provide timestamps for each speaker-turn,

which often comprise several words (see Figure 5). However, the model requires

frame level label alignments. To this end we use a forced alignment technique which

is described in Section 3.2.2.2. Before doing so we need to clean the transcripts as

discussed in Section 3.2.2.1.

3.2.2.1 Corpus cleaning

The first step was to clean the transcript files in order to get a list of tuples where

the first element is the cleaned transcript of one speaker’s turn, and the second is the

time stamp of this utterance. The original transcripts need to be cleaned to remove

unwanted meta-information. This has been performed using regular expressions,

which handle different cases.

After obtaining tuples of cleaned transcripts and corresponding timestamps, the

original audio files were segmented using the AudioSegment module from the Pydub

[23] library. We decided to exclude all utterances which do not contain a filler, in

order to simplify the tagging task. However, it should be noted that this does not

resemble a real scenario and must be studied separately.

3.2.2.2 Forced alignment

The process of automatically giving time stamps to every word in a speech file,

given its transcription, is called forced alignment. We use force alignment to obtain

frame level labels on our speech data. Montreal Forced Aligner [17, 16] tool was

used for this step. This tool can only be used on 16kHz audio files, so we had

to artificially upscale all of our audio files from 8kHz to 16kHz. This approach is

not recommended and susceptible to alignment errors. Ideally one should use an

alignment acoustic model trained on 8 kHz speech. Moreover, we had to convert the

original stereo audio files, containing one speaker on each track, into mono audio

files.
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Given an audio file and its transcription, the aligner output files in the TextGrid

format [5], which contains word level and phone level time alignments. We picked a

sample of 20 aligned utterances of different length to manually assess the quality of

the alignment, and we found the alignments to be reliable. Unfortunately some of

the files could not be aligned. Typically, this happened when two speaker’s voices

were overlapping. We had to discard these utterances from the experiment.

This filtering and alignment process left us with 1.78 hour of aligned data, dis-

tributed over 2884 utterances. The mean, min, and max duration of the utterances

are 2.23, 0.09, 18.69 seconds, respectively.

3.2.3 Model configuration

Following the same procedure we used for sequence classification task, we extracted

MFCC coefficients over short overlapping frames of size 25 ms and 12.5 ms shift.

The number of MFCC vectors will be equal to the number of frames in the audio

signal.

Our RNN follows the architecture shown in Figure 4. The RNN model is trained

to label each frame of MFCC vector with one of the labels: speech, silence or

hesitation. Training takes place over mini-batches, with length of each mini-batch

fixed to the longest utterance length along with zero padding. A separate class

label is reserved for zero padding frames in the input.

3.3 Initial results

Among the 2884 audio files available, 2500 were used for training and 384 for testing.

As for the sequence classification task, we trained the model through 50 epochs,

using mini-batches of 32 utterances at a time and a learning rate of 0.05. We used

cross-entropy loss function and Adam optimizer. It is taken care that computation

of loss function and accuracy are not biased by zero padding frames. The model

achieved a train accuracy of 8.24% and a test accuracy of 7.34%. The confusion

matrices relative to these accuracy values are shown in Figure 6 and Figure 7. The

values reported on the matrices correspond to the number of frames relative to

speech, silence and filler tags, in which the audios were originally segmented.
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Figure 6: Confusion matrix for the train set.

Figure 7: Confusion matrix for the test set.

These poor results are mainly due to the simple RNN architecture that we used

for the experiment. An improvement could be achieved augmenting the complexity

of the model. In particular, Long Short-Term Memory (LSTM) RNN could be

exploited. LSTM are, indeed, more powerful than the basic RNN involved in our

experiment. They are able to remember information for a longer period of time

and able to use more context to make predictions. Another variant that can be

exploited is the Bi-Directional LSTM Network (BLSTM). BLSTM would run the

inputs in two ways, one from left to right and one from right to left. Using the two

hidden states combined at each frame, it would be possible in any point in time to

preserve information from both past and future. Eventually, increasing the numbers

of hidden layers and stacking more layers could be another thing to explore.
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We did not attempt the aforementioned solutions due to time limitations. In

Section 3.3, we will discuss what we learnt from this project, what mistake can be

avoided in future research work, and lastly we will discuss our overall experience

about having conducted such a project.
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Learning and experience

This work on event detection in spontaneous speech has been strongly eventful, so

much so that we will no longer undertake a project as we used to. We have learnt

various things, from how to approach a research project, to how to organize the

team work around it.

Firstly, we have learnt how a little mismanagement of time can unsettle the work

flow. We lost a lot of time on tasks that we believed to be crucial, which turned

out to be not as significant as we expected. In future work, we will ensure to be

more discerning on what is important and what is not for accomplishing the final

aim of the project.

Secondly, working on a research project which lasted several months was a pre-

miere for us. It lead us to think broad, as the project could be approached under

the angle of our choice. Also, it allowed us to focus our studies on a specific topic

over a long period of time, which helped us deepen our understanding of the spe-

cific field of speech recognition. Conducting such a long term project resulted in

facing delicate situations, such as discouragement when we were clueless, or sense

of accomplishment when a problem was successfully solved. Overall, it taught us

that anything can be learnt if time and investment are dedicated to the task.

Finally, this project was also an unhoped opportunity to get introduced to the

research world. We have got some insights on laboratory and researcher life, which

will guide us over our future choice of career. In the same vein, we dived inside the

research paper writing task, which will be of crucial help for our future university

and professional projects.

Although the results are not the ones we expected, we would like to humbly

express the pride we feel to have concluded a project of this importance.
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