
MSc Natural Language Processing - 2020/2021
UE 705 - Supervised Project

Corpus correction

Bibliographic report

Sutdents :

Margot GUETTIER

Kahina MENZOU

Papa Amadou SY

Supervisor :

Bruno GUILLAUME

December 2020

Contents

1 Introduction 2

2 Methodology 3

2.1 Variation Detection . 3

2.1.1 Proposal of improvement . 6

2.1.2 ERRATOR: a tool for error detection 7

2.1.3 Variation detection weaknesses 8

2.1.4 Detecting and correcting annotation in the French TreeBank . 9

2.2 Detection of errors using parsers . 11

2.2.1 Detecting errors . 11

2.2.2 Correcting errors . 12

2.2.3 Parsers and active-learning . 13

2.3 Evaluation . 15

3 Conclusion 18

References 19

1

1 Introduction

For this tutored project we decided to focus on dependency annotations in corpora

and more particularly on the annotation errors present in these corpora. Annotated

corpora are great resources, especially for research in linguistics but also for computer

scientists working in the field of natural language processing. The quality and thus

the reliability of these morphosyntaxic annotations are of great importance. Never-

theless there are errors in these corpora, and, as Boyd et al[3] assert in their article,

the presence of errors in linguistic annotations has been shown to create problems for

the computational and theoretical linguistic uses of these corpora. Even the smallest

errors can have significant impact on the linguistic usage of the annotations. There-

fore, improving annotations and annotation schemes is a key element to improve the

quality of these annotated corpora and their reliability.

Our project fits perfectly in this perspective. Indeed our goal is to implement an er-

ror detection system for corpora with dependency annotations. For this purpose we

will use existing methods and possibly improve them, taking into consideration the

positive and negative points that have already been raised by researchers interested

in this problem.

In the remainder of this report, we will first carry out a state of the art on error

detection methods. In the following part we will analyze the variation detection

methods followed by the detection methods using parsers and finally we will present

how to evaluate an error detection system.

2

2 Methodology

In corpora, the dependency annotation can be performed either automatically, using

parsers, or manually when a better quality of annotation is desired. In this report we

will focus on manually annotated corpora. Despite of these manual annotations, the

presence of errors is inevitable. In this section, we will introduce different approaches

for errors detection that we found in articles. The first important thing to notice is

that all these methods can be divide into two categories. On the one hand approaches

using variation detection, on the other hand method which detect errors by using

parsers. We will first present the paper by Boyd et al [3] which is the basis of most

other research using variation detection. In this part several variants of Boyd et

al’s approach will also be presented. We will close the presentation of this method

by presenting a tool that has been developed according to the concept of variation

detection. Then in a second part, we will introduce the methods using parser for

errors detection.And finally, in a last part, we will introduce the evaluation methods

of error detection systems.

2.1 Variation Detection

Boyd and al [3] use the method of variation detection developed for detecting errors

in Part of speech annotation and constituency annotations. The method is based on

variation detection, which consist on find identical n-gram in a corpus and compare

their annotation. If the two n-gram are not annotated the same way, then we must

have detected a potential error. Example:

(1) a. je
PRON

le
DET

vois
VERB

‘I see him‘

b. je
PRON

le
PRON

vois
VERB

‘I see him‘

3

In the example (1) we have twice the same sequence of word but part of speech

tagging is different for each case. The method assume that one of the annotation is

potentially wrong. The changing element is called the variation nuclei, and the word

on the right and the one on the left are called right and left context1. The errors

we can detect with the method are potential because we have to distinguish if it’s

actually an error or only a genuine ambiguity of the language. In order to adapt the

method to dependency annotation the variation nuclei will be a pair of words which

represent exactly one relation between a governor and a dependant. The relation is

represented by a directed arc, to precise the direction, it is added to the dependency

label a L if the governor is to the left and a R if it is to the right. There are two types

of comparison between pairs of words: either in each pair, the two words are linked

by a dependency relationship, or in one of the pairs, the two words are not linked by

a dependency relationship. Boyd et al assign the label NIL to this non-relation. To

improve the detection of errors and not detect genuine ambiguities contextualisation

is important. Indeed context allows us to have a bigger segment to find errors and

reduce the number of matches that we have if we only search the variation nuclei.

There is three types of context:

• The non-fringe heuristic context give one element of context around each word

of the variation nuclei.

• The dependency context heuristic corresponds to the relation between the gov-

ernor of the variation nuclei and one element of the rest of the sentence. Add

a dependency context can reduce ambiguity when we compare two pairs of

words.

• NIL2 internal context heuristic, it is the context between the two words of the

pair when they are not contiguous.

1A previous study conducted by Markus Dickinson [4] has shown that the immediate context is
sufficient to detect errors with high precision.

2nil means ’zero, non-existent’, so we assign the NIL label when two words in the same sentence
are not related to each others. For example in the sentence ’I eat bread’, I and bread are not related
it would have a NIL label for this pair of words.

4

For the variation detection algorithm, on the one hand the system has to create a

list with all the pairs of words with a dependency relation and assign them a label

related to the kind of relation they have. The system also have to add to this list

the words which are not in a dependency relation (limited to the boundaries of the

sentence), in that case we assign the label NIL.

(2) a.

Il mange ses fraises.
’He is eating his strawberries.

Root

nsubj

obj

det

b. (Il, mange) ⇒ label nsubj-R

(mange, fraises) ⇒ label obj-L

(ses, fraises) ⇒ label det-R

c. (il, ses)⇒ label NIL

(il, fraises) ⇒ label NIL

(mange, ses) ⇒ label NIL

If we follow the first step of the algorithm for the example (2a) we obtain (2b). Then

we add the pair of words with a NIL relation (2c). Note that in a corpus the frequency

of NIL relations is very high, but it is not necessary to build all of them. A NIL

relation is useful only if the same pair of words appears with a non-NIL annotation

elsewhere. This means that in (2c), the relation NIL between il and ses is useful

only if the pair (il, ses) is linked by a relation somewhere else in the corpus.

Once we finished the list for the entire corpus, the second step of the algorithm is

to determine if for one pair of words there is more than one label assign. If it is the

case one of the annotations of this pair is a potential error.

5

2.1.1 Proposal of improvement

The research of Boyd et al [3] on the detection of annotation errors in corpus depen-

dency has been repeated many times, either with the aim of developing tools as we

will see later or to improve the method. It is this last point that we will discuss in

this section. The main objective of the modifications we will present is to improve

the recall and the precision of the variation detection method. In their article Marn-

effe et al [6] propose two modifications to limit the intrinsic variation of each word.

The first proposal is to study dependency annotations by taking into account lemma

(dictionary entry), instead of word-form (use of words in sentences, in context).

(3) a.

Tu manges une fraise.
TU MANGER UN FRAISE.
’You are eating a strawberry.’

Root

nsubj

obj

det

b.

Tu mangeras une fraise.
TU MANGER UN FRAISE.
’You will eat a strawberry.’

Root

nsubj

obj

det

If we analyze the two sentences (3a) and (3b) following Boyd’s original method, never

the relation manges → fraise, would be compared with mangeras → fraise, however

it is just a change of tense, the context is identical so the dependent annotation

should be identical. The use of lemmas will allow the comparison of these two pairs

of words, since they are now identical MANGER → FRAISE. For the three languages

(French, English, Finnish) they experimented on, the results for this first proposal

6

are heterogeneous. Indeed, for French and English this method gives results close

to the results obtained using word-form. However for Finnish which is a complex

morphological language, this method generates too much loss of information and

therefore a drop in recall and precision. In front of this impossibility to use lemmas

for morphologically complex languages, they propose a second modification. This

modification consists in a delezicalization, using morphological features instead of

lemmas and word-form. For instance if we take the sentence from example (3a),

instead of looking for pairs of words including the lemma TU we will look for pairs

of words including a singular pronoun. For Finnish this method does indeed give

better results than the use of word-form, however this method is still not as good as

the original approach of Boyd et al.

2.1.2 ERRATOR: a tool for error detection

Based on the principle of variation detection, Guillaume Wisniewski [10] has devel-

oped a tool - Errator3 - which allows the detection of errors in dependency annotated

corpora. This tool uses the concept of pair of words but also the concept of surround-

ing context. For the continuation of the presentation of this method we will name

sub-strings the combination of pair of word + surrounding context. This tool is

based on the fact that if two identical sub-strings are annotated differently, then it

is very likely that one of them is wrongly annotated.

In order to detect errors with the best possible accuracy, the sub-strings that will be

compared must have as much context as possible.

(4) a. Every morning I go to school by bus with my sister and brother.

b. When I get up I go to school by bus and I sing the whole way.

If we take as an example the two sentences (4a) (4b), we will have to take the

biggest common part of these two sentences which is “I go to school by bus”, this

step is done thanks to the Generalized Suffix Tree tool. Then Errator extracts the

3https://perso.limsi.fr/wisniews/errator/

7

annotations corresponding to these sub-strings. If the annotations of the first sub-

string is different from the annotations of the second sub-string then a potential error

has been detected.

2.1.3 Variation detection weaknesses

As seen previously, variation detection is used to detect annotation errors in an-

notated corpora. In his article Markus Dickinson [5] presents the main problems

encountered when one wishes to use the results of the variation detection for auto-

matic error correction.

These problems can be split into two categories. Firstly the Uniform Non Major-

ity cases and secondly the Non Uniform Non Majority cases. For the first case we

distinguish three problems:

• If a variation which appears only twice with the same local context. Shown

once incorrectly labeled and once correctly what we can do to distinguish is to

look at the categories of the Part of speech of the nucleus.

• A second issue is that there is a lot of labels considered as a non-majority ones

but in fact they are correct label.

• Sometimes there is an instance which varies in a context between two categories

which are new, so here there is a problem of consistency of the conversion

between those categories.

For the second case a problem arises when there is the set of occurrences where we

have the same immediate context, the same POS tags, except that the nucleus has

a set of different dependents so we must trust the rest of the context, i.e. broaden

the context for better annotate.

8

2.1.4 Detecting and correcting annotation in the French TreeBank

As for the second part of this project we are going to work in particular on cor-

pora in French. This study carried out on the French Treebank (FTB) will help

us to target the errors we may encounter subsequently. Like the Penn TreeBank in

English, in French the largest available resource of syntactically and Part of speech

(POS) tagging annotated corpora is the French TreeBank. The article of Boudin et

al [2] presents a series of experiments carried out on the detection and automatic

correction of French Treebank errors. The FTB is the result of a supervised articles

annotation project from ”Le Monde newspaper” and was built in a semi-automatic

way. The corpus use for this experiment is made of 21.562 sentences =⇒ 628.767

words (tokens). In the selected corpus, 7.747 tokens which no label could be assigned

either the label is missing, or the present label is not valid. In total, the generated

corpus contains 2.090 sentences in which at least one unlabeled token is present. An

automatic labeler is first applied to all texts. The outputs are then corrected manu-

ally for any errors made by the tool. Despite this, there are other human-made errors

that may exist such as the lack of labels or the presence of empty XML elements.

Regarding the choice of labels, the FTB was satisfied with the 13 labels of POS tags.

However, a recurring problem arises: in French language, there are what are called

compound words these words have always had a labeling problem. To remedy this

problem a Tokenizer capable of detecting compound words is applied. Nevertheless,

the existing methods have not yet reached a mature level. To reduce the losses of

all compound words the FTB is limited to compound words whose lemma does not

contain the space character. For instance in (5a), the word ”cerf-volant” is take into

account because there is an hyphen between ”cerf” and ”volant”. While in (5b) the

compound word ”pomme de terre” is not treated as a single word because there is

no hyphen but spaces, even though semantically they work as a single entity.

(5) a. cerf-volant

‘kite‘

b. pomme de terre

‘potato‘

9

Two complementary methods are used to correct annotation errors in the FTB:

1. The first method identifies unlabeled words and assigns them, the most fre-

quent label for this token. This assignment can be ambiguous if for a given

token several labels have similar frequencies. The solution is to assign only the

most frequent tag if its frequency in the corpus is greater than the sum of the

frequencies of the other candidate tags. Only tags with a frequency greater

than 1 are used.

2. The second method uses n-gram variations in order to detect and correct anno-

tation anomalies. The approach is based on the detection of labeling variations

for the same n-gram of words. A n-gram variation means n-gram which con-

tains a word annotated differently in another occurrence of the same n-gram.

Thus constituting a variation nucleus. As a result, we can say that the more

the contexts of a variation are similar, the greater the probability that it is an

error.

For this second method a heuristic is proposed to correct some variations. This is

as follows: we consider n-grams by decreasing size, then by decreasing number of

occurrences. Candidates are selected for a correction according to two constraints:

• The presence of at least two lexical units.

• The presence of a variation, with no missing label, whose number of occurrences

is strictly greater than the sum of the occurrences of the other variations. In

fact, only the n-grams occurring at least three times are considered.

This last constraint also serves as a basis for proposing a correction. Indeed, the

variation which validates the constraint is considered to be the correct sequence of

labels. The number of corrected tokens increases when the minimum size of the

processed n-grams is reduced.

(6) ,/PONCT l’/D une/N des/P plus/ADV =⇒ ,/PONCT l’/D une/PRO des/P plus/ADV

‘One of the most‘

10

The example (6), taken from the same article, illustrates the correction made with

this heuristic. The word Une annotated as N is corrected to be PRO.

2.2 Detection of errors using parsers

In this part we will present the second kind of methods for errors detection which

is detection by using parsers. Parsers have an advantage over human annotation,

because even if errors are more frequent when annotating with parsers, the errors

made are consistent, the same pair of words in the same context will not be annotated

twice in different ways. Contrary to the human, which depending on its state of mind,

its fatigue or even its understanding of the guidelines can annotate the same structure

in several different ways. Three methods of using parsers to detect errors in corpora

will be presented in this section.

2.2.1 Detecting errors

Error detection can be done using one or more parsers. In this part we will present

you two detection errors method, and in the next part how these methods are used

to correct those errors.

In their study, Volokh et al [9] used two differents parsers to proceed to the detection:

1. the graph-based MSTParser (Minimum-Spanning Tree Parser)

2. the transition-based MaltParser

The two parsers are trained on the data, then we parse the exact same data with

these two parsers in order to replicate the Gold Standard. The accuracy will be

very high (98% - 99%) because we train them on the data. The percentages which

does not match the Gold Standard correspond either to structure not caught by the

model, or a wrong annotation in the Gold Standard, is that case we are interested

in. In that study they consider a relation in the Gold standard as potentially wrong

if the predictions of both parsers have a prediction different from the Gold Standard.

11

This first method thus takes into account three elements, the predictions of the two

parsers and the annotations of the Gold standard.

A second study also uses a parser system. Agrawal et al [1] uses a parser to detect

potential errors in a corpus. It is a matter of comparing the parser predictions with

the Gold Standard annotations, if they don’t match then it’s a potential error.

The final goal of these two studies is the correction of errors, in the next part we will

detail the correction technique.

2.2.2 Correcting errors

Even if our project aims is the detection of errors, the two previous methods are

used in order to correct errors. Thus in this part we will explicate how use parsers

for errors correction.

After detecting errors with their the parsers, in order to correct them, Volokh et al [9]

proposed to substitute the potential error in the Gold standard with the prediction

of one of the parser (MSTParser), then they parse with a third parser (MDParser

: Multilingual Dependency Parser). If this last parser predict the same as the new

Gold standard, then we assume this error has been corrected.

How do they choose the parsers? The first two parsers are based on different ap-

proaches, this ways they tend to make different type of errors. To substitute the

Gold Standard we use the MSTParser because the Maltparser and the MDParser

are based on the same approach, it is to avoid bias.

This first correction method is fully automatic, so it may seem unreasonable to use it

on a corpus that has been manually annotated. Indeed, this could reduce the quality

of the corpus annotations. The second correction method proposed by Agrawal et al

[1] is a semi-automatic alternative that can be use for manual annotated corpora. In

this method the system does not completely replace the manual intervention of the

linguist. Correcting the corpus of several thousand sentences manually is a very long

and tedious task. The following correction approach aims to facilitate these manual

corrections. As said before, parsers have an advantage, they are consistent in their

12

decision, whether the decision is right or wrong, the same relationship will not be

annotated twice differently. In the previous part we saw how Agrawal et al detects

the errors, those errors will be validated or rejected by a manual annotator. In this

way the work of the manual corrector is much less time consuming and simpler. In

order to make this method feasible it is imperative that the parser used has a very

good recall, so that the majority of errors will be part of the potential errors.

2.2.3 Parsers and active-learning

The proposed model by Rehbein et al [7] combines a generative and unsupervised

method to estimate the reliability of annotators with active learning for the task

of error detection in automatically annotated data. The model works as follows:

during preprocessing, the model collects parse predictions from a committee of N

dependency analyzers, then it creates two input matrices, one for dependency labels

and one for attachments to form the two models of variational inference. After train-

ing, each model returns the posterior entropies for its respective decisions. Based

on the entropy, it selects the next instances to annotate during active learning. The

intuition behind this is that the labels or attachments with the greater entropy are

probably incorrect. The annotator then enters the correct label. The information is

used to update both the label and attachment matrices by randomly selecting one

of the annotators and replacing the predictions of that annotator for the instance in

question with the new prediction. Once the error correction is complete, we have

to output the trees, either based on the predictions from the variational inference

model (MACE-AL-TREE) or on the output from the Chu-Liu-Edmonds algorithm

(MACE-AL-TREE-CLE). MACE-AL-TREE uses the final predictions of the varia-

tional inference model to select the most trustworthy labels and edges and combine

them into a final tree. However, this does not necessarily result in a fully connected

tree. The second approach uses the Chu-Liu-Edmonds algorithm, to select the high-

est scoring, well-formed tree from a weight matrix, where the weights are based on

the votes from the parser committee, weighted by the competence estimates learned

by the variational inference model (MACE-AL-TREE-CLE).

13

During the experiments, they used 5 parsers. The first experiment focuses on error

detection in the German Universal Dependency tree bank which includes newswires,

reviews and text from Wikipedia. The results were very low on the German Uni-

versal Dependency, indeed only 35,5% of errors have been detected. Then they used

data from the English web treebank. This treebank includes data from five different

web genres (reviews, weblogs, answers, emails, newsgroups). The table 1 below gives

the results.

Table 1: Performance for individual parsers and parse combinations based on the predictions of
the VI model with AL (MACE-AL-TREE) and with CLE (MACE-AL-TREE-CLE) for generating
the trees (simulation study; Labelled attachment score (LAS) and error detection (ED) precision)

The data was first separated into the five web genres. Each genre has been split into

training data and test data. Then they ran an AL simulation for 1000 iterations,

where in each iteration an instance is selected randomly and corrected according the

14

gold4. Table 1 shows in its second section the parsing accuracies after increasing iter-

ations of error correction (from 0 to 1000 where 0 is the output of MACE-AL-TREE

with 0 iteration). In its third section, we have the details of the trees formed with

the MACE-AL-TREE-CLE method. As we can see, there is not much difference

between the two methods and it is difficult to say whether one method is better than

the other. The differences in results could be explained by different initializations of

the variational inference model.

2.3 Evaluation

The last question that arises concerning the methods presented above is the question

of evaluation. How do we evaluate an error detection system when we do not know

the number of errors present in the corpus. Several proposals have been made.

The evaluation of the automatic correction in the French TreeBank [2] is performed

extrinsically by comparing the performance of different POS taggers in relation to

the level of correction. In this study, two systems using maximum entropy models

(MaxEnt) are chosen: version 3.0.4 of the Stanford POS Tagger [8] and the morpho-

syntactic tagger of the ApacheOpenNLP suite.

1. The Stanford POS Tagger has been trained with a standard set of bidirectional

lines on words and tags

2. ApacheOpenNLP suite has been trained with the default implementation which

characterizes each word using features of the three preceding and following

words. These traits are the prefixes and suffixes of four characters, the rudi-

mentary information class of these characters (e.g. starts with a capital letter,

is a number, is a symbol), the grammatical label and the surface form of the

words.

4Either we have a human annotator who corrects annotations from parsers or we have a gold
which does it.

15

To check the effectiveness of the methods via the two systems, those systems are

trained and evaluated from the different correction levels of the FTB in this way:

1. The FTB + corr.1 : corresponds to the correction of the missing tags using

method 1 (Identifying unlabeled words and assigns them, the most frequent

tags for this token).

2. FTB + corr.2 corresponds to the correction of annotation errors by the method

of n-gram variations.

3. FTB + corr.1/2 and FTB + corr.2/1 correspond to the successive use of the

two correction methods:corr.1 then corr.2 and vice versa.

The results that are presented in this study have all obtained by cross-validation in

10 strata. Three evaluation measures are considered relevant to our experiments:

accuracy on tokens, accuracy on sentences, and accuracy on missing labels. The

standard deviation (σ) of the scores over the 10 strata is also calculated. By apply-

ing the two systems (Stanford POS Tagger and ApacheOpenNLP suite) on tokens

and sentences, we noticed that the precision score increases by following method 1

(Identifies unlabeled words and assigns them, the most frequent tags for this token)

with FTB+corr.1. The score is reduced for the correction with n-gram (method 2)

which means that this approach adds more errors. For the the missing labels the

scores remains more or less stable.

To evaluate their system, that uses multiple parsers, Volokh et al [9] propose to

replace the Gold Standard of their corpus by new annotations containing 100% errors.

In order to be sure that all annotations are erroneous, for each sentence of the corpus

they replace the annotations by the annotations of a sentence of the same length.

They check that none of the new annotations are similar to the original annotations.

16

(7) a.

C’ est une petite cuisine
’It is a small kitchen’

Root

nsubj

obj

det

amod

b.

Le chat mange une fraise.
’The cat eat a strawberry.’

Root

nsubjdet
det

obj

c.

C’ est une petite cuisine
’It is a small kitchen’

Root

nsubjdet
det

obj

For instance we have the sentence (7a). We want to have 100% erroneous annotations.

So we take a second sentence of same length (7b), and we replace the annotations

of (7a) by the annotations of (7b) and we obtain (7c). As you can see all the

annotations of (7c) are wrong. In this way they are aware of the number of errors

and can see after application of their method what percentage of error is detected.

Once they apply their method on their corpus, with annotations 100% erroneous,

the percentage of errors detected is 45.9%. They insist on the fact that the errors

were introduced randomly and may not correspond to the real errors that can be

found in the annotated corpora.

17

3 Conclusion

For the first part of this project we researched which are the methods that are used to-

day for error detection in dependency annotated corpora. Thus we could distinguish

two main types of methods, the one that uses the concept of variation detection and

the one that uses parsers. Among these methods, some of them supported fully au-

tomatic detection and correction of errors in the corpus. We note that for a manually

annotated corpus, the use of a fully automatic correction tool is not recommended

since it would degrade the results of a manual work of several months or even several

years.

For the second part of this project, we will test in more detail the Errator tool which

is already functional. Then we will implement one or more methods that we have

discovered through these articles. Since we will experiment these methods on the

French and English corpora of Universal Dependencies, which have been manually

annotated, applying a fully automatic correction method, which as said before would

degrade the data, would not be adequate. So we will only be interested in the error

detection part. The final objective is to develop an error detection tool with the

best accuracy possible for dependency annotated corpora. This will be followed by

an implementation of an evaluation system for the proposed methods in order to see

the limits, the strengths and the points to be improved in future work.

18

References

[1] Bhasha Agrawal et al. “An Automatic Approach to Treebank Error Detection

Using a Dependency Parser”. In: vol. 7816. Mar. 2013, pp. 294–303. doi: 10.

1007/978-3-642-37247-6_24.

[2] Florian Boudin and Nicolas Hernandez. “Détection et correction automatique

d’erreurs d’annotation morpho-syntaxique du French TreeBank (Detecting and

Correcting POS Annotation in the French TreeBank) [in French]”. In: Proceed-

ings of the Joint Conference JEP-TALN-RECITAL 2012, volume 2: TALN.

Grenoble, France: ATALA/AFCP, June 2012, pp. 281–291. url: https://

www.aclweb.org/anthology/F12-2021.

[3] Adriane Boyd, Markus Dickinson, and Detmar Meurers. “On Detecting Errors

in Dependency Treebanks”. In: Research on Language and Computation 6 (Oct.

2008), pp. 113–137. doi: 10.1007/s11168-008-9051-9.

[4] M. Dickinson. “Error detection and correction in annotated corpora”. In: 2005.

[5] Markus Dickinson. “Correcting Dependency Annotation Errors”. In: Proceed-

ings of the 12th Conference of the European Chapter of the ACL (EACL

2009). Athens, Greece: Association for Computational Linguistics, Mar. 2009,

pp. 193–201. url: https://www.aclweb.org/anthology/E09-1023.

[6] Marie-Catherine de Marneffe et al. “Assessing the Annotation Consistency

of the Universal Dependencies Corpora”. In: Proceedings of the Fourth In-

ternational Conference on Dependency Linguistics (Depling 2017). Pisa,Italy:

Linköping University Electronic Press, Sept. 2017, pp. 108–115. url: https:

//www.aclweb.org/anthology/W17-6514.

[7] Ines Rehbein and Josef Ruppenhofer. “Sprucing up the trees – Error detec-

tion in treebanks”. In: Proceedings of the 27th International Conference on

Computational Linguistics. Santa Fe, New Mexico, USA: Association for Com-

putational Linguistics, Aug. 2018, pp. 107–118. url: https://www.aclweb.

org/anthology/C18-1010.

19

[8] Kristina Toutanova et al. “Feature-Rich Part-of-Speech Tagging with a Cyclic

Dependency Network”. In: Proceedings of the 2003 Human Language Technol-

ogy Conference of the North American Chapter of the Association for Com-

putational Linguistics. 2003, pp. 252–259. url: https://www.aclweb.org/

anthology/N03-1033.

[9] Alexander Volokh and Günter Neumann. “Automatic Detection and Correction

of Errors in Dependency Treebanks”. In: Jan. 2011, pp. 346–350.

[10] Guillaume Wisniewski. “Errator: a Tool to Help Detect Annotation Errors

in the Universal Dependencies Project”. In: Proceedings of the Eleventh In-

ternational Conference on Language Resources and Evaluation (LREC 2018).

Miyazaki, Japan: European Language Resources Association (ELRA), May

2018. url: https://www.aclweb.org/anthology/L18-1711.

[11] Guillaume Wisniewski and François Yvon. “How Bad are PoS Tagger in Cross-

Corpora Settings? Evaluating Annotation Divergence in the UD Project.” In:

Proceedings of the 2019 Conference of the North American Chapter of the Asso-

ciation for Computational Linguistics: Human Language Technologies, Volume

1 (Long and Short Papers). Minneapolis, Minnesota: Association for Compu-

tational Linguistics, June 2019, pp. 218–227. url: https://www.aclweb.org/

anthology/N19-1019.

20

