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Chapter 1

Introduction

Parsing of text is a prerequisite for many NLP tasks, such as sentiment analysis [Di Caro

and Grella, 2013], machine-translation [Ding and Palmer, 2005] and information extraction

[Yakushiji et al., 2006], to mention a few. Over the past decade, parsers have achieved very

high performance levels in open-domain data, like the Penn Treebank. However, applying

these parsers to real-world data, where assessing performance is complicated due to the lack

of a test-set to test against, is a pressing problem. This issue is magnified when dealing with

out-of-domain data for which parser performance drops substantially. The most common

way to address the evaluation of unannotated data has been to manually annotate a small

test-set to test the parser on. An approach that is very costly, as it must be performed for each

domain separately and involves human labor. This is why a computerized method to gain

meaningful insight about the reliability of a parser in real-world data is highly desirable.

The goal of this project is to explore the possibilities of automatic evaluation of parsers

on unnanotated data. We will approach this problem by studying the behaviour of state-

of-the-art parsers in out-of-domain data, and trying to correlate the agreement of different

parsers with their respective performance. To achieve that, we will look at different tree

alignment and parse matching functions and see how these metrics correspond with the

actual performance of the parsers.

This report documents the body of knowledge acquired on the field during the inception

phase of the project and proceeds to the formalization of an action plan for the following

development stages. The rest of this report is organized as follows. Chapter 2 provides a

background on Dependency Parsing and its core elements. This is followed by Chapter 3

which focuses on data-driven parsing approaches and techniques. Chapter 4 discusses the

challenges of parser evaluation especially on out-of-domain data. Finally, Chapter 5 presents

the conclusion and the action plan that will be carried out during the following months.
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Chapter 2

Dependency Parsing

In recent years, the field of natural language processing has seen an increasing popularity

of dependency-based methods for syntactic parsing. Dependency parsing is an approach

inspired by the linguistic theory of dependency grammar, and which performs automatic

syntactic analysis of natural language.

There are many reasons why these methods become more and more popular. One reason

that justifies this popularity is the fact that dependency-based syntactic representations

appear to be useful when it comes to language technology applications, such as machine

translation and information extraction, as a result of their transparent encoding of predicate-

argument structure. Moreover, they seem to be reliable for a wide range of languages that are

typologically different and most importantly, this approach combined with machine learning

from syntactically annotated corpora has allowed the development of accurate syntactic

parsers.

There are different methods for dealing with dependency parsing. Generally speaking, we

can divide these approaches into two classes, knowledge-based and data-driven dependency

parsing. Knowledge-based approaches rely on a formal description of the dependency

relations within words (so-called grammar), while data-driven ones use annotated data

and machine learning algorithms to parse new sentences. We must note however, that it is

possible for a parsing method to use both machine learning and formal grammar, making it

data-driven and grammar-based at the same time [Kubler et al., 2009].

In the next sections, we will present the notion of dependency grammar that constitutes

the basis of dependency parsing, we will formally represent dependency graphs, discuss

projectivity and conclude this chapter by introducing annotated data (so-called treebanks),

which are used by data-driven dependency parsers.
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2.1 Dependency Grammar

Dependency grammars constitute a family of grammar formalisms, used by many current

approaches in speech and language processing. In Dependency grammar, a sentence’s

syntactic structure is described with regard to the words or lemmas in that sentence and

the set of directed binary grammatical relations that hold among them. More specifically,

the linguistic units, i.e. words, are associated with directed links, the main predicate (verb)

becomes the root of the clause structure and every other syntactic unit is connected to the

verb with directed links. These links (syntactic units) are called dependencies.

As an illustration, consider Figure 2.1 page 6, where relations are represented by directed,

labeled arcs above the sentences, and which connect heads to dependents. This dependency

graph serves as a portrayal of each word in a sentence along with its modifiers.

Dependency grammars have been used in particular to describe morphologically rich

languages that have a relatively free word order. For example, when dealing with a language

whose word order is relatively flexible, such as Czech, where one can observe for instance the

occurrence of a grammatical object before or after a location adverbial, a dependency-based

approach would just need one link type to represent the particular adverbial relations that

occur. This makes it a convenient formalism for a large number of languages, sometimes at

the cost of non-projective dependency arcs, that will be discussed later in the chapter.

Moreover, Dependency grammars not only enable us to identify the head-dependent

pairs but also to further classify the kinds of grammatical relations or grammatical function,

regarding the dependent’s role in the sentence with respect to its head. Such relations

are familiar notions like subject and direct or indirect object. While in English word order

is generally fixed and these notions do not determine the position in a sentence and the

constituent type, in more flexible languages where phrase-based constituent syntax does

not provide much help, the information that is directly encoded in the aforementioned

grammatical relations is of critical importance.

2.2 Formal Representation

Dependency graphs are syntactic structures over sentences. A sentence is denoted by: S=

w0,w1. . . wn , with w0 being the ROOT and each token wi representing a word.

Let R= r1,. . . ...,rm be a set of permissible arc labels.

Formally, a dependency graph for an input sentence is a labeled directed graph G=( V, A) that

consists of a set of nodes V and a set of labeled arcs A, such that for a sentence S= w0,w1. . . wn
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and label set R we have:

• V ⊆ w0,w1. . . wn

• A ⊆ V x R x V

• If (wi , r, w j ) ∈ A then (wi , r’, w j ) 6∈ A for all r’ 6= r

An arc (wi , r, w j ) A represents a dependency relation from head wi to dependent w j

labeled with relation type r.

We call dependency trees any well-formed dependency graph G= (V, A) for an input

sentence S and dependency relation set R that is a directed tree that originates out of node

wo and has the spanning node set V= Vs.

Figure 2.1: Dependency Structure for an English sentence.

[Kubler et al., 2009]

The dependency graph In 2.1 is represented by:

• G = (V, A)

• V= Vs = ROOT, Economic, news, had, little, effect, on, financial, markets,.

• A= (ROOT, PRED, had), (had, SBJ, news), (had,OBJ, effect), (had, PU,.), (news,ATT,

Economic), (effect, ATT, little), (effect, ATT, on), (on, PC, markets), (markets, ATT,

financial)

2.3 Dependency Trees

More specifically, a dependency tree constitutes a directed graph with the following features:

• There is a single designated root node with no incoming arcs.

• Each vertex has only one incoming arc, with the exception of the root node.
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• There is a unique path from the root node to each vertex.

These features ensure that each word will have a single head, that the dependency struc-

ture is connected and that there is one and only root node that presents the directed path

to every one of the words in the sentence. Furthermore, each word is either modified or

modifies another word. The only word that is solely modified and does not modify anything

else is the root of the tree [Jurafsky, 2009].

2.4 Projectivity

A dependency tree is considered projective if all the arcs that make it up are projective,

meaning that there is a path that connects the head to every word that is found between

the head and the dependent in the sentence. However, in languages that present a relatively

flexible word order, we observe many valid constructions that lead to non-projective trees.

Overall, we know if we are dealing with projectivity or non-projectivity depending on how

we are drawing the trees. A dependency tree is projective if there are no crossing edges in its

representation [Jurafsky, 2009].

Figure 2.2: An example of a non-projective dependency tree

[Ambati, 2008]

Every sentence in natural language can be analyzed by a division of the dependency tree

structures in projective or non-projective trees [Ambati, 2008].

Regarding the English language, the majority of the parse trees are projective but in

certain cases, a non-projective tree is preferred. In the sentence “John ate an apple yesterday

which was red”, the relative clause “which was red” is separated from the object “an apple”

that it modifies by “yesterday”, a modifier of the main verb. In this case, we cannot draw a

dependency tree that doesn’t have crossing edges [Ambati, 2008]. This distinction is very

important in the research focused on parsing, since the algorithms change based on the kind

of the tree we are dealing with [McDonald et al., 2005].

The transition-based parsing approach that is described in the following chapter only

produces projective trees in its classical formulation and will therefore contain some errors
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when dealing with sentences with non-projective structures. This is one of the reasons

motivating the more flexible graph-based parsing approach [Jurafsky, 2009].

2.5 Data-driven dependency parsing

This report focuses on the data-driven dependency parsing paradigm. As opposed to

grammar-based dependency parsing, data-driven approaches learn to produce dependency

graphs from an annotated corpus. One advantage these models present, is that they can be

used in any domain that has annotated resources [McDonald and Nivre, 2007].

2.5.1 Dependency treebanks

When it comes to the development and evaluation of such dependency parsers, depen-

dency treebanks are of great importance. They have been created by human annotators that

described dependency structures for a particular corpus directly, or via automatic transforma-

tion from phrase-structure treebanks [Jurafsky, 2009]. The most well-known such treebank is

the Penn Treebank for English [Marcus et al., 1993].

2.5.2 Universal Dependencies

Linguists have succeeded in developing dependency relations that extend further than the

familiar notions of subject and object. The Universal Dependencies project [Nivre et al.,

2016], provides a list of dependency relations that are linguistically-oriented, computationally

useful and cross-linguistically applicable.

Frequently used relations are clausal relations used to describe syntactic roles based on a

predicate (usually a verb) and modifier relations used to categorize the ways words modify

their heads [Jurafsky, 2009].
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Chapter 3

Machine learning approaches for

dependency parsing

In this chapter we will talk about ways to tackle the dependency parsing task with a data-

driven perspective by using Machine Learning (ML) techniques. We will see the two varieties

of algorithms that are most widely recognized by the community: transition-based and graph-

based methods. Finally, we will give a short-glimpse of the state-of-the-art in dependency

parsing, which mostly boils down to how the deep-learning revolution got integrated into the

already existing frameworks.

3.1 Transition-based and graph-based approaches

There are countless ways of approaching dependency parsing, but as the field got more

mature most methods started to converge into two varieties of techniques: transition-based

and graph-based parsers [Jurafsky, 2009]. In this section we will give a high-level description

of these two approaches. The two approaches make use of ML techniques to implement

some complex aspect of the algorithm (like decision oracles and dependency arc probabilistic

models). For the purpose of brevity we will abstract the specific ML algorithms, and assume

that some classical feature based ML technique is used.

3.1.1 Transition-based systems

Transition-based parsers take inspiration from the bottom-up parsers that are common in

compilation techniques for programming languages [Aho and Ullman, 1972].

Programming languages are formal languages and are constructed grammar-first instead
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of the grammar naturally arising as in natural language. The grammars of formal languages

are usually constructed to be "unambiguous" and "context-free", which restricts the kinds

of rules and productions that can be defined [Aho et al., 1986]. These restrictions are what

allows the text to be parsed into the grammar by a computational model as "simple" as

deterministic pushdown automata [Hopcroft et al., 2001].

A pushdown automaton is just a finite-state automaton that has been augmented with a

stack. At each transition the pushdown automaton reads the next item from the input (same

as a finite-state automaton), but it also reads the top of the stack and may push or pop a

constant amount of symbols to the stack, depending on the read symbols and current state.

The behaviour of a pushdown automaton is defined by its transition function. A transition

function

δ : Q ×Σ×Γ→Q ×Γ∗

is an application which maps a combination of an automaton state q ∈Q, tape symbol σ ∈Σ
and stack state γ ∈ Γ to a new automaton state q ′ ∈Q and a sequence of symbols to push or

pop to the stack (γ1,γ2, ...,γn) ∈ Γ∗. In the case of formal languages the transition function of

the pushdown automata is completely defined by the grammar of the formal language.

However, if we want to use this same proven method for natural language text, we are

going to need to make some adjustments.

Firstly, we have to assume that the underlying natural language grammar is "context-free".

This might seem as too strong an assumption but it turns out that natural language grammar

mostly follows context-free patterns. The parses of context-free languages have the property

of projectivity, and although dependency parses mostly satisfy this property, it is not always

the case. Hopefully there are ways to bypass this limitation, albeit at the cost of computational

complexity.

Secondly, we need to think about a transition function for the parser pushdown automa-

ton. The naive solution would be to write a context-free grammar for the language we want

to parse, and apply the same technique as in formal languages. Nevertheless, this is highly

impractical to do for a natural language, which is huge compared to man-made formal

languages.

Since defining a transition function is a very complex task, the common theme is to

learn the function using some ML technique. As in the case of these kinds of data-driven

techniques, it is necessary to collect a big amount of data to learn the algorithm. To learn

this transition function we need examples of the parsing state of a pushdown automaton

paired with the action the automaton should take. Although there is no data in such format

readily available, it is fairly easy to generate by taking a dependency tree annotated corpus,
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and automatically parsing it using the reference tree while you annotate the transitions.

A parsing state of a pushdown automaton consists of the contents of the stack (sequence

of words), the symbol (word) that is being read from tape and the state of the automaton.

There are many ways to encode this information to make it usable for a ML algorithm. The

classical way is to represent words as vectors of binary and categorical features (that each

word has). The whole state is then represented as a sequence of these vectors.

The idea of action is often simplified from the traditional automata theory notion, instead

of describing a transition of the automaton state and an arbitrary modification to the stack,

there are three actions that the automaton can do: SHIFT, RIGHTARC and LEFTARC

• SHIFT: removes the next word from the input tape and pushes it onto the stack

• RIGHTARC: produces an arc from the second (from the top) word in the stack to the

top word, removes the top word (the dependent)

• LEFTARC: produces an arc from the top word in the stack to the second (from the top)

word, removes the second word (the dependent)

This set of operators implements what is known as the arc-standard approach to transition-

based parsing [Covington, 2001].

To produce labels for the arcs the last two operations must be parametrized with a

dependency type label, which grows the number of effective actions considerably. See Figure

3.1 for an unwrapped view of the parsing process.

Figure 3.1: Detailed trace of the parsing process of a transition-based system.

If we generate the appropriate data to train the ML oracle (transition function), and the

training is successful, then it is just a matter of simulating a pushdown automaton with the

trained ML algorithm as the transition function to have a working parser, see Figure 3.2.
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Figure 3.2: Diagram of the operational view of a transition-based parser. It analyzes the next word in
the input buffer and the stack, and the oracle decides the action to take.

Before closing this section, let’s take this chance to talk about some of the strengths and

problems of this approach. To begin with, it is important to appreciate the low resource usage

of this method, as it stands, it is linear O(n) in both space usage and time complexity. This is

partly because of the greedy nature of this method (i.e. it considers a unique local decision

at each step and discards the rest), however this also plays against it. The first problem the

greedy aspect arises is that the method only produces projective parses, which greatly limits

the performance headroom of the method as it can’t get non-projective cases right. There are

ways to solve this in exchange for a performance penalty, which keeps the revised methods’

time complexity bound at a quadratic level O(n2) [Nivre, 2009].

The second problem is that the method lacks a global view of the parse. It only operates

locally in a decision by decision basis and cannot go back to fix a previous bad decision. This

effect can be mitigated somewhat by allowing the parser to keep a set of decision sequences

(also called a "beam"), instead of just keeping the decision sequence of the locally best

decisions. For this to work, we need to change the oracle, so that it scores all the possible

local decisions instead of returning the best ones. With this kind of oracle the procedure

would consist in producing all possible next decision sequences given a beam of previous

decision sequences, ranking the new sequences according to an aggregate function of all

local decisions, trimming the amount of decisions in the beam to a pre-established size K

and repeating the procedure until all sequences in the beam are final. This search algorithm

is known as K-best Beam Search [Russell and Norvig, 2002].

12
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3.1.2 Graph-based systems

Graph-based methods work by first defining a fully-connected directed graph G(V ,E ), where

the vertices V are the words of the sentence to parse and a special "root" vertex; and the

edges E are all the possible dependency relations between each word. There is also an edge

going from the root to all the words. This graph now contains all the possible dependency

trees as subsets of the set of edges, so the current objective is to select the edges from the

graph to obtain the subset of edges E ′ which represents the correct dependency tree.

Not any subset will do though, the subset of edges we select must constitute a valid

dependency tree, so we will need the following properties:

1. All vertices (but the root, which has none) must have a single incoming edge ∀v ∈
(V − {vr oot }) deg−(v) = 1 and deg−(vr oot ) = 0

2. There are no cycles

These two properties suffice to ensure that the subgraph is a tree rooted at the "root"

vertex, hence all vertices are reachable from the root. It also fixes the amount of edges to

|E ′| = |V |−1. This kind of tree where all vertices of a graph are reachable from a given root is

called a spanning tree of the graph. A graph may have more than one spanning tree, and this

graph we defined happens to have a combinatorial amount of them. In fact, each spanning

tree corresponds to a dependency tree, so there are as many spanning trees as ways to parse

a sentence into a dependency tree.

We are now in need of some criteria to select a single spanning tree as the prediction of the

system. With the current setup there is nothing special about some edges over others. In order

to measure the quality of a spanning tree, we are going to need to take into account the quality

of individual selections of edges and aggregate the scores into an overall score for the whole

spanning tree. To do this, we will need to weight each arc with a score that represents how

likely a dependency is from the source word to the dependent word. As already mentioned,

this a very complex task by itself, so we will turn once again to data-driven ML techniques to

learn an approximator for these scores. A example is shown in Figure 3.3

The ML system is very simple in this case. It just needs to regress a numeric value (a

probability or log-probability) given the two words in the dependency relation, and the

label of the dependency relation. As with the ML methods for transition based systems, the

encoding for the words is a topic of its own, but has been classically approached by feature

vector representations.

The data we need to learn this function consists in the true weighted graphs, which we

can construct by setting the weight to 1 for edges that are in the ground-truth dependency

13
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Figure 3.3: Directed weighted graph for the sentence "Book that flight".

trees and 0 for all other edges. Once we have trained our scoring algorithm we can predict

weights for all edges in the graph.

Now we need a method to select a spanning tree given the weights of individual edges in

the graph. One intuitive way of going about this, is to try to maximize the sum of scores of all

edges in the spanning tree. This is a typical problem in graph algorithms. A spanning tree

that maximizes the sum of the weights of the edges that constitute it, is called the Maximum

Spanning Tree (MST) of a graph. There are very efficient algorithms already developed to

tackle this problem, that can solve it in as little as O(|E |+ |V | log |V |) [Gabow et al., 1986], and

since the graph is fully connected |E | ∈O(|V |2), the method is quadratic O(n2) in the number

of words n = |V |.
Comparing it with the transition based method, this method is both slower and takes

more memory (O(|E |+|V |) =O(n2) at least to store the graph). However it is not a completely

fair comparison since this method produces non-projective parses without any modification.

If compared with the transition-based methods that can produce non-projective parses, the

asymptotic complexities are both quadratic.

In terms of performance, graph-based methods have empirically shown better perfor-

mance in longer sentences where transition-based methods struggle. Conversely they are

usually outperformed in shorter sentences [McDonald and Nivre, 2011]. This difference is

attributed to the mismatch between the local and fine-grained nature of the transition-based

systems and the high-level coarse-grain view of the solution space of the graph-based method.

According to this hypothesis, longer sentences are problematic for transition-based systems

because there are more chances for a bad transition to be selected by the oracle, and once a

bad action is taken the whole parse process that follows is ill-conditioned; graph methods,

14
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on the other hand, do not propagate errors as the parsing process is not sequential, and a

small parsing mistake in one place may not have such an impact in the rest of the parse.

3.2 State-of-the-art

In the last decade all the fields of AI have seen a huge progress. This is significantly due to the

raise of deep learning, which has allowed to push the performance of the state-of-the-art for

many AI tasks, including dependency parsing.

Deep learning refers to a family of machine learning methods that have to do with artificial

neural networks and representation learning [Goodfellow et al., 2016]. What sets deep learn-

ing apart from previous machine learning methods is that representations are learned directly

by the algorithm, bypassing the need to manually test different combinations of feature based

representations. Since there is no need to do feature-engineering, the development time

for this kind of algorithms is greatly reduced and the need of field experts to do this work is

depreciated. Also, features are fixed unlike representations in deep learning, which can adapt

during the training process. Because of this deep learning algorithms tend to outperform

feature based machine learning algorithms. This is not always the case however, as deep

learning techniques are known to need huge amounts of data to form good representations,

whereas feature based algorithms are not so data-hungry.

In the case of dependency parsing, the two prevailing methods got revised with deep

learning approaches. There are two works that have set the tone for the adoption of deep

learning in the field: the one by [Ma et al., 2018] about the stack-pointer architecture for

dependency parsing, which implements a deep-learning version of a transition-based de-

pendency parsing system; and the one by [Dozat et al., 2017] about a Graph-based neural

dependency parsing, which infuses graph-based methods with deep learning approaches.

More recently, the use of pretrained neural language models, such as BERT [Devlin et al.,

2019], have enabled additional performance gains and have lowered the training costs signifi-

cantly. These language models are trained with a very large amount of unannotated text (e.g.

the whole Wikipedia) through a self-supervised learning process. In the end these systems

are able to produce very rich representations of text that can be used to warm start a deep

learning algorithm.

As we have seen, there are various approaches to dependency parsing. In the next chapter,

we will discuss parser evaluation, with a focus on out-of-domain data (that is, parsing of data

that significantly differ from the data used to train the parser).
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Chapter 4

Evaluation of dependency parsing

In this chapter we talk about dependency parser evaluation approaches. We will first discuss

how in an ideal setting, a parser’s output is evaluated against one or more reference gold

standard treebanks. As it is not always the case, we will then contemplate reliability as a

challenging aspect of evaluation. Inter Annotator Agreement (IAA) concept and metrics are

introduced as a way of tackling the difficulties we might face especially when evaluating parser

performance on out of domain data. Different IAA metrics and underlying assumptions are

reviewed. Finally, we try to somehow map the idea to the problem of evaluating dependency

parser, based on the suggested solutions.

4.1 Dependency Parser Evaluation

The most conventional evaluation of dependency parsers is based on measuring how well

they work on a train/dev/test split of the gold standard treebank, meaning how the output

parses match the corresponding ones in the gold standard data. Therefore, a dependency

parser, could then be evaluated by checking the parsing of the test set against the gold

standard annotation of the test set found in the reference treebanks. Many metrics have been

used for dependency parser evaluation. Some of them are the following:

4.1.1 Exact Match

This metric represents the percentage of completely matching parsed sentences. This might

not be the best choice to measure the parser, as a large number of sentences could be labeled

wrong. Although, some of them contain just small deviations from the gold standard data.

16



BIBLIOGRAPHIC REPORT

4.1.2 Attachment Score

The most common method for evaluating dependency parsers are labeled and unlabeled

attachment accuracy. Labeled attachment is the correct assignment of a word to its head

along with the correct dependency relation. Unlabeled attachment on the other hand, looks

at the correctness of the assigned head, ignoring the dependency relation. Having a parser

output and a reference parse, accuracy can be calculated using the percentage of words in the

input that are assigned the correct heads with the correct relations. These metrics are usually

referred to as the labeled attachment score (LAS) and unlabeled attachment score (UAS).

Figure 4.1: Comparison of the gold standard parse and the parser result. [Jurafsky, 2009]

In figure 4.1 the total Head-Dependent pairs in ‘Reference’/Ground Truth is 6. Total

Head-Dependent pairs correctly detected with correct tags is 4 (Book → flight and flight →
me are not accounted). Labeled Attachment Score (LAS): The ratio of correctly detected

Head-Dependent pairs along with their tag/ total Head-Dependent pairs in the ground truth

is 4
6 = 0.666. Total Head-Dependent pairs correctly detected is 5 (irrespective of the tag, only

flight → me is a wrong pair and is not counted). Unlabeled Attachment Score (UAS): The ratio

of correctly detected Head-Dependent pairs (irrespective of the tag)/ total Head-Dependent

pairs in ground truth is 5
6 = 0.833.

4.2 Parser Evaluation on Out-of-Domain Un-Annotated Data

In parsing literature, it is common to see parsers trained and tested on the same textual

domain. Unfortunately, the performance of these systems degrades on sentences drawn from

a different domain [McClosky et al., 2010]. Hence, when dealing with out-of-domain data,

evaluation of parser’s performance seems necessary. This evaluation might turn into a bigger

problem once the out of domain data is not annotated and there is no gold standard parse

tree available.
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Proposed solutions for such a problem would be to either manually annotate test data

from the new domain, or to conduct a reliability study. While the former is expensive and

not very elegant, the later is based on the assumption that annotation is reliable if parsers

seem to agree on the dependencies assigned [Krippendorff, 2004, Craggs and Wood, 2005].

If different parsers produce similar results, then we can infer that they have internalized

a similar understanding of the annotation guidelines, and we can expect them to perform

consistently under this understanding. Reliability is thus a prerequisite for demonstrating

the validity of the parsing [Krippendorff, 2004].

4.3 Inter-Annotator Agreement

The simplest measure for gauging the agreement between two annotators is percentage of

observed agreement, defined as “the percentage of judgments on which the two analysts

agree when annotating the same data independently” [Scott, 1955]. This is the number of

annotations on which the annotators agree divided by the total number of annotations.

Observed agreement enters in the computation of all the measures of agreement we

consider, but it does not yield values that can be compared on its own, since some agreement

is chance-based, and the amount of chance agreement is affected by two factors. First of all,

“[percentage agreement] is biased in favor of dimensions with a small number of categories”

[Scott, 1955]. In other words, given two annotation schemes for the same phenomenon, the

one with fewer categories will result in higher percentage agreement just by chance.

The second reason why percentage agreement cannot be trusted is that it does not correct

for the distribution of items among categories: We expect a higher percentage agreement

when one category is much more common than the other [Hsu and Field, 2003]. The con-

clusion reached in the literature is that in order to get figures that are comparable, observed

agreement has to be adjusted for chance agreement [Krippendorff, 2004].

4.3.1 Chance-corrected IAA

All of the coefficients of agreements, correct for chance on the basis of the same idea. First,

we find how much agreement is expected by chance: Let us call this value Ae . The value

1− Ae will then measure how much agreement over and above chance is attainable; the

value Ao − Ae will tell us how much agreement beyond chance was actually found. The ratio

between Ao − Ae and 1− Ae will then tell us which proportion of the possible agreement
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beyond chance was actually observed. This idea is expressed by the following formula.

S,π,κ= Ao − Ae

1− Ae

The three best-known coefficients, S [Bennett et al., 1954], π [Scott, 1955], and κ [Cohen,

1960], and their generalizations, all use this formula. All three coefficients therefore yield

values of agreement between −Ae
1−Ae

(no observed agreement) and 1 (observed agreement = 1),

with the value 0 signifying chance agreement (observed agreement = expected agreement).

Note also, that whenever agreement is less than perfect (Ao < 1), chance-corrected agreement

will be strictly lower than observed agreement, because some amount of agreement is always

expected by chance.

All three coefficients assume independence of the annotators.That is, that the chance of c1

and c2 agreeing on any given category k is the product of the chance of each of them assigning

an item to that category: P (k|c1) ·P (k|c2). Expected agreement is then the probability of c1

and c2 agreeing on any category, that is, the sum of the product over all categories:

AS
e = Aπ

e = Aκ
e = ∑

k∈K
P (k|c1) ·P (k|c2)

The difference between S,π, andκ lies in the assumptions leading to the calculation of P (k|ci ),

the chance that annotator ci will assign an arbitrary item to category k [Zwick, 1988, Hsu and

Field, 2003].

S: This coefficient is based on the assumption that if annotators were operating by chance

alone, we would get a uniform distribution: That is, for any two annotators cm , cn and any

two categories k j , kl , P (k j |cm) = P (kl |cn).

π: If annotators were operating by chance alone, we would get the same distribution for each

annotator: For any two annotators cm , cn and any category k, P (k|cm) = P (k|cn).

κ: If annotators were operating by chance alone, we would get a separate distribution for

each annotator [Krippendorff, 2004].

4.3.1.1 Krippendorff’s α - Weighted Agreement Coefficient

Any general similarity metric is necessarily going to suffer from the issue that all parts of the

syntactic annotation are not equally important: whether an interjection was misattached in

the tree is much less important than if it was the subject of the sentence. Therefore any such

similarity metric cannot reliably answer the question how good or bad the result actually

is, only how much it is structurally different. [Skjærholt, 2014] Krippendorff’s α is not as
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commonly used as κ and π, but it has the advantage of being expressed in terms of an

arbitrary distance function δ. Krippendorff’s α is normally expressed in terms of the ratio of

observed and expected disagreements: α= 1− Do
De

, where Do is the mean squared distance

between annotations of the same item and De the mean squared distance between all pairs

of annotations:

Do = ∑
i∈I

1

|Xi |−1

∑
c∈C

∑
c ′∈C

δ(xi c , xi c ′)2

De = 1∑
i∈I |Xi |−1

∑
i∈I

∑
c∈C

∑
i ′∈I

∑
c ′∈C

δ(xi c , xi ′c ′)2

Here the function δ can be any metric. function.[Kripendorff, 2004]

4.3.2 Chance-Corrected IAA for Dependency Parsers

There are a lot of IAA metrics for many different kinds of annotation, but no such measure is

in widespread use for the task of syntactic annotation.

Most IAA metrics are defined under the assumption that annotations contain little to

no internal structure (such as in a label). In fields like syntactic parsing however, where the

annotations are trees, structure is the main point of annotation. In this case, the metrics

have to be adapted to effectively deal with structure. There are two prevailing methods for

IAA: adapted F-score and accuracy metrics, and similarity measure specific for dependency

trees(LAS). The former has the issue of being biased in favour of annotation schemes with

fewer categories and not accounting for skewed distributions between classes, and the latter

is not chance-corrected which has some limitations as pointed out earlier [Skjærholt, 2014].

Instead [Skjærholt, 2014] suggests to use a method based on Krippendorff’s α, that works

on any items for which a distance function (that defines a valid metric-space) can be defined.

The annotation items in syntactic parsing are trees, so a valid distance function must be

defined that works with trees. Some works have used the Tree Edit Distance (TED) metric,

which is a generalization of the String Edit Distance.

As we just saw, there are various ways of dealing with disagreeing annotations (e.g. de-

pendency parses). What we are looking for is a mean to assess how reliable a dependency

parse is, according to its similarity with parses produced by other parsers on the same input

sentence. In this context, some of the metrics above may prove useful.

In the next section, we will conclude by sketching an action plan, which aims at imple-

menting an experimental inter-parser agreement evaluation.
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Chapter 5

Conclusion and Action Plan

In previous chapters we reviewed the concept of dependency parsing and went through some

modern approaches.

Elaborating on the data-driven parsing idea, we discussed the most common methods

used in the parsers that are based on machine learning algorithms. We also introduced the

state-of-the-art deep-learning parsing. In order to address the parser evaluation on out of

domain data, we took a closer look at the parser evaluation process, and how the lack of gold

standard data might influence it. The concept and metrics of Inter Annotator Agreement

were discussed for the evaluation. Different approaches and methods are offered in articles

to measure this agreement as robustly as possible. Lastly, we have reviewed a number of

suggestions related to out-of-domain dependency parsing (see Appendix A) and we will start

the implementation phase based on the following timeline.

5.1 Data Collection

During the first month we will collect a collection of publicly available data (e.g. Wikipedia),

preferably in French.

5.2 Parsing experiments and Annotation

During the second month we will install a number of relevant (in terms of reliability and

performance) parsers in order to generate different annotations over the data collected in the

previous section.
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5.3 Parser Agreement Appraisal

During the third month we will use the annotations generated in 5.2 and evaluate the agree-

ment of the different parsers that we tested over the data set acquired at the first step.

5.4 Structural Adjustment and Re-Inspection

During the fourth month we will implement a suitable structural alignment method and

conduct an agreement study, showing how the new calculated agreement is different from the

un-adjusted version and how well it represents the actual similarity between the annotations.

5.5 Documentation

The last step will consist in the analysis of the final results, the documentation of the final

report’s details and the defense.
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Appendix A

Paper summaries

Monolingual Phrase Alignment on Parse Forests

This paper proposes a method to conduct "phrase alignment" on parse trees (and an exten-

sion to forests), with the particular application in "paraphrase detection". The proposed

method stands out by making use of linguistically motivated grammars to identify "syntactic

paraphrases" and because of it being able to align non "non-homographic" phrases. The

method shows good performance when compared to the human baseline.

The algorithm has two design aspects:

• A probabilistic aspect where the goal is to estimate the probability of a phrase align-

ment as supported by some already aligned phrases. In this method this probability

estimation is implemented as an expression (softmax) with learnable parameters and

feature embeddings. The "linguistically motivated" aspect of the algorithm are the

selected features for the computation of this probability.

• An alignment algorithm that constructs sets of aligned phrase pairs and their proba-

bilities using a function that estimates the probability of a phrase alignment. It uses

this function in a recursive equation to compute the probabilities of the alignment of

the phrases taking into account the probabilities of the supporting alignments. The

algorithm works by constructing the alignments in a bottom up fashion by selecting

pairs of already aligned phrases (word alignments in the beginning) and considering

the alignment of the lowest common ancestors (LCA) of these pairs of phrases, this

is repeated until the roots of the parse tree are aligned. The result of the process is a
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parse tree alignment (which consists of a set of phrase alignments) and probabilities

for these phrase alignments.

This method works on tree-alignment but can be extended with minor changes to forest

alignment. The proposed method was trained and evaluated in a new dataset (also part of

this work) which consists of a set of manually annotated phrase alignments. The experiment

results showed that the methods performance is not very far from human performance.
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A chance-corrected measure of inter-annotator agreement for

syntax

When annotating a corpus, having a notion for the consistency of annotations between

different annotators in a given annotation task, is crucial for understanding the qualities

and limitations of the annotated corpus. Inter-annotator agreement (IAA) metrics provide a

quantitative measurement (a number) of the agreement between annotations of different

annotators, these can be used to give a quantitative comparison between different annotated

corpora.

There are a lot of IAA metrics for many different kinds of annotation, each one with its

pros and cons: some are sensitive to some kinds of errors and not other kinds, some are very

strict (score very low) and some are very lenient (score very high), some are chance-corrected

metrics (takes into account the probability of two annotations agreeing by chance) and some

are not. All in all there is no perfect formula for assessing IAA, but rather a myriad of metrics

that can be used in conjunction to gain an understanding of the quality of the annotation.

Most IAA metrics are defined under the assumption that annotations contain little to

no internal structure (such as in a label), in fields like syntactic parsing however, where the

annotations are trees, structure is the main point of annotation. In this case the metrics

have to be adapted to effectively deal with structure. Previous to the work of this paper

there where two prevailing methods for IAA: adapted F-score and accuracy metrics, and

a similarity measure specific for dependency trees called LAS. The former has the issue of

being biased in favour of annotation schemes with fewer categories and not accounting for

skewed distributions between classes, and the latter is not chance-corrected which has some

limitations, and only works with dependency trees.

One possibility that this paper observes to find a good IAA chance-corrected metric is to

chance-correct LAS. This possibility is soon discarded as it has many inconveniences that

make it impractical, for instance it requires a random model of tree annotation which would

have to enumerate a number of trees exponential in the length of the annotated sentences. It

would also require a probabilistic model of the annotators tree annotations, for which there

is no one clear way to define a model, possibly resulting in different definitions by different

practitioners, which would make the results in different papers incompatible.
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Instead, this paper proposes a method based on Krippendorff’s α, which is a chance-

corrected measure that works on any items for which a distance function (that defines a

valid metric-space) can be defined. The annotation items in syntactic parsing are trees, so

a valid distance function must be defined that works with trees. In this work the Tree Edit

Distance (TED) metric is used, which is a generalization of the String Edit Distance. They also

experiment with two variations of TED which attempt to nullify or normalize the effect that

the difference of sentence length has.

The results show that this metric has similar behaviour to LAS while also being chance-

corrected and applicable to structural annotation schemes other than dependency parsing

(such as constituency parsing), making the metric more sound. Another difference from

LAS is that this new metric is more lenient with errors of token tags, and focuses more in the

actual structure of the annotated tree, which may or may not be of interest.
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Reranking and Self-Training for Parser Adaptation

This paper is focused on parser adaptation whose purpose is to use existing labeled data from

a domain and create a parser that is able to parse a different domain. There is a high need

for parser portability since there aren’t sufficient corpora from different domains that can be

used as training data.

McClosky et al. (2006) were able to deliver promising results on parser adaptation without

in-domain data. They showed that parser performance can be improved by using two recent

techniques for parser improvement, self-training and parse-reranking.

They approached the issue by using a first-stage n-best parser trained on some WSJ

labeled out-of-domain data to parse sentences from the LA Times (unlabeled out-of-domain

data taken from the North American News Corpus, or NANC).The n-best parse trees that this

parser produced were reranked and the highest ranked parse trees were then added to the

training corpus and the parser was retrained.

This self-training method not only improved the performance of the WSJ (absolute f-score

improvement of 0.8%) but also of test sentences taken from the Brown corpus (absolute

f-score improvement of 2.6%). In their experiments, self-training is used on parse trees from

the same domain (newspaper articles) as the parser’s original training data and perhaps this

is the reason why they achieved such results and why they expect that the parser would not

perform well on text from another domain, like medical text. However, even though they

have not experimented with data from different domains, they speculate that a self-trained

parser based on that data might work even better than their standard best.
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Learning Paraphrase Identification with Structural Alignment

This paper suggests a new method to calculate Semantic similarity of text, using both local

information like lexical semantics and structural information like syntactic structures. They

propose a new alignment-based approach that uses an attributed relational graphs, to encode

lexical, syntactic and semantic information. Alignment of two such graphs combines local

and structural information to support similarity estimation. To improve alignment, they

introduced structural constraints inspired by a cognitive theory of similarity and analogy.

Because similarity labels are given in training data and the true alignments are unknown, so

they address the learning problem using two approaches: alignment as feature extraction

and alignment as latent variable. The system is supposed to predicts whether two sentences

can be considered semantically equivalent or not. They solve this problem with a pipeline of

three components:

• Graph extractor: Given two pieces of text, it uses word embeddings and a set of

automatic annotators to extract the tokens, syntactic relations, POS tags and entity

mentions to generate the attributed relational graphs.

• Structural aligner: Given two attributed relational graphs, the structural aligner gener-

ates an alignment. An alignment of two attributed relational graphs is a set of matches,

and each match is a correspondence between two nodes or edges.

• Similarity estimator: Given an alignment, the similarity estimator produces a similarity

score between the two graphs or a label indicating whether they are similar enough to

be considered equivalent or not.

Their method uses a hybrid representation, attributed relational graphs (directed graphs with

attributes attached to the nodes and edges). The attributes store local information about

a unit/node or a relation/edge, which will later be used to extract features for each match

between two nodes or two edges. They use tokens as units/nodes and dependency arcs as

relations/edges. For attributes, they used dependency label, token, lemma, POS tag, NER tag

and word embedding. There are two advantages of this representation. First, it is expressive

enough to encode heterogeneous structural information in the same graph; second, local

information can be easily encoded as attributes.

The two core components of their approach are the structural aligner and similarity

estimator. Given two input graphs, the structural aligner finds the best alignment between

them, which can be seen as a structured prediction problem. Based on the best alignment,

the similarity estimator produces a score indicating the degree of similarity or a binary output
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indicating whether the two sentences are semantically equivalent or not, which can be seen

as a regression or classification task depending on which output is produced. An alignment is

a set of matches. Each match is a pair of nodes or edges from the two graphs. The structural

alignment has two steps:

First, given two graphs, the structural aligner generates all the possible matches that pass

some criteria. In this work, the criteria they used are that (1) two matched dependency arcs

must have the same dependency label; (2) the cosine similarity between word embeddings

of two matched tokens must be greater than come threshold (value is chosen from pilot

experiments with a subset of the data). Second, it selects the subset of matches that optimizes

a function mapping input graphs and a candidate alignment to a feature vector. They use

beam search to find the alignment.

Formalized as a regression or classification problem, the similarity estimator takes the

pair of graphs and the predicted alignment as input, and uses another feature function to

map them to a feature vector. They use SVM to learn the set of parameters for the similarity

estimator.

Learning the set of parameters for the structural aligner is more challenging because the

true alignment is usually latent. They address this problem using two approaches, alignment

as feature extraction and alignment as latent variable.

In the first approach, they consider the structural aligner as a feature extractor and the

set of parameters for the similarity estimator as hyperparameters, and use grid search over

a validation set to select the best parameters. But the problem is that the number of runs

needed in grid search grows exponentially with the number of hyperparameters, So they

have to restrict the mapping function of similarity estimator to include just a small set of

features. In addition, the grid search cannot be very fine-grained due to its computational

cost. To overcome these problems and utilize more features in the structural aligner, the

second approach jointly trains the structural aligner and the similarity estimator through an

iterative process.

First, they initialize the parameters to some value obtained from the first approach. Then

they repeat two steps: Keep set of parameters for the structural aligner fixed, for each input,

assume the alignments produced by the structural aligner is “correct” and learn the set of

parameters for the similarity estimator. Keep the set of parameters for the similarity estimator

fixed, for each input, hallucinate the “correct” alignment.
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Features used in feature functions:

Unary features are used to estimate how similar two matched tokens or dependency arcs are,

and also how important they are in their sentences. These features are used to compute how

much this match will contribute to the alignment score or overall similarity.

Pairwise features are introduced to improve alignment by encoding the structural con-

straints between matches. These structural constraints ensure that the final alignment is

structurally consistent. They are inspired by the structural consistency principle of Structure

Mapping theory. The principle states that two constraints are used by human when aligning

predicate-argument structures:

(1) one-to-one mapping that one entity or predicate should only match to one entity

or predicate; (2) parallel connectivity that if a predicate matches another predicate, their

roles and arguments should also match correspondingly. In this work, they adapted these

constraints to work on tokens and syntactic relations.

So if the heads of two dependency arcs match, the two dependency arcs should also be

more likely to match. If two dependency arcs match, the dependent of the dependency arcs

should be more likely to match as well.

The alignment and rich features enabled the system to learn which part of the sentences

are more important to its semantic rather than treating them all the same. Structural align-

ment further eliminates false positives because it helps constrain the lexical matches.In the

experiment, this approach achieved results competitive with other state-of-the-art models

on the MSRP corpus. Further analysis showed the strength of this hybrid approach and con-

firmed contributions of structural alignment using structural constraints and joint learning.
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The CoNLL 2007 Shared Task on Dependency Parsing

The idea is to explore data-driven methods for multilingual dependency parsing, and the

problem of domain adaptation. The domain adaptation task was to use machine learning

to adapt a parser for a single language to a new domain. The official evaluation metric in

both tracks was the labeled attachment score (LAS), i.e., the percentage of tokens for which

a system has predicted the correct HEAD and DEPREL, but results were also reported for

unlabeled attachment score (UAS), i.e., the percentage of tokens with correct HEAD, and the

label accuracy (LA), i.e., the percentage of tokens with correct DEPREL

The multilingual track: with annotated training and test data from a wide range of lan-

guages to be processed with one and the same parsing system. This system must therefore

be able to learn from training data, to generalize to unseen test data, and to handle multiple

languages, possibly by adjusting a number of hyper-parameters.

Domain adaptation track: For this shared-task there is no annotated resources in the

target domain. Participants were provided with a large annotated corpus from the source

domain, in this case sentences from the Wall Street Journal. They were also provided with

data from three different target domains: biomedical abstracts (development data), chemical

abstracts (test data 1), and parent-child dialogues (test data 2). Additionally, a large unlabeled

corpus for each data set (training, development, test) was provided. The goal of the task

was to use the annotated source data, plus any unlabeled data, to produce a parser that is

accurate for each of the test sets from the target domains.

In multilingual track there were two main paradigms for learning and inference: transition-

based parsers and graph-based parsers.

Transition-based parsers build dependency graphs by performing sequences of actions,

or transitions. Both learning and inference is conceptualized in terms of predicting the

correct transition based on the current parser state and/or history. We can further subclassify

parsers with respect to the model (or transition system) they adopt, the inference method

they use, and the learning method they employ.

Graph-Based Parsers While transition-based parsers use training data to learn a process

for deriving dependency graphs, graph-based parsers learn a model of what it means to be

a good dependency graph given an input sentence. They define a scoring or probability

function over the set of possible parses. At learning time, they estimate parameters of this

function; at parsing time they search for the graph that maximizes this function. These

parsers mainly differ in the type and structure of the scoring function (model), the search

algorithm that finds the best parse (inference), and the method to estimate the function’s
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parameters (learning).

Domain Adaptation

Feature-Based Approaches: One way of adapting a learner to a new domain without using

any unlabeled data is to only include features that are expected to transfer well. In structural

correspondence learning a transformation from features in the source domain to features

of the target domain is learnt. The original source features along with their transformed

versions are then used to train a discriminative parser.

Ensemble-Based Approaches: One system trained a diverse set of parsers in order to

improve cross-domain performance by incorporating their predictions as features for another

classifier. Similarly, two parsers trained with different learners and search directions were

used in the co-learning approach. Unlabeled target data was processed with both parsers.

Sentences that both parsers agreed on were then added to the original training data. This

combined data set served as training data for one of the original parsers to produce the final

system. In a similar fashion, another system used a variant of self-training to make use of the

unlabeled target data.

Other Approaches: One system learnt tree revision rules for the target domain by first

parsing unlabeled target data using a strong parser; this data was then combined with labeled

source data; a weak parser was applied to this new dataset; finally tree correction rules are

collected based on the mistakes of the weak parser with respect to the gold data and the

output of the strong parser. Another technique used was to filter sentences of the out-of-

domain corpus based on their similarity to the target domain, as predicted by a classifier.

Only if a sentence was judged similar to target domain sentences was it included in the

training set. Another system used a hybrid approach, where a data-driven parser trained

on the labeled training data was given access to the output of a Constraint Grammar parser

for English run on the same data. Finally, another system learnt collocations and relational

nouns from the unlabeled target data and used these in their parsing algorithm.

System Combination: To combine the outputs of each parser in multilingual track they

assign to each possible labeled dependency a weight that is equal to the number of systems

that included the dependency in their output. This can be viewed as an arc-based voting

scheme. Using these weights, it is possible to search the space of possible dependency trees

using directed maximum spanning tree algorithms. The maximum spanning tree in this case

is equal to the tree that on average contains the labeled dependencies that most systems

voted for. It is done by sorting the systems based on their average labeled accuracy scores

over all languages, and then incrementally adding each system in descending order. both

labeled and unlabeled accuracy are significantly increased, even when just the top three
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systems are included. Accuracy begins to degrade gracefully after about ten different parsers

have been added. Furthermore, the accuracy never falls below the performance of the top

three systems.

In domain adaptation track four closed system outperformed the best scoring open

system. Considering that approximately one third of the words of the chemical test set are

new, the results are noteworthy. The next surprise is to be found in the relatively low UAS for

the CHILDES data. One major reason for this is that auxiliary and main verb dependencies

are annotated differently in the CHILDES data than in the WSJ training set. In this domain,

it seems more feasible to use general language resources than for the chemical domain.

However, the results prove that the extra effort may be unnecessary (small difference between

top closed system and top open system)
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