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Chapter 1

Introduction

This report presents the realisation part of the supervised project for the degree of

MSc Natural Language processing. This report illustrates the realisation phase of

our research in the fields of Federated Learning and Ensemble Learning as presented

in the bibliographic report preceding this. Chapter 2 will present the studies that

inspired the experiments described in this report. The state-of-the-art results that

we used for the comparison in our work will also be presented there. In Chapter 3,

the theoretical explanation of the implemented algorithms will be introduced. All

technical details of the realization along with the results will be presented in Chapter

4. Chapter 5 will contain insights about the obtained results. Final thoughts on

the projects and possible future work will be discussed in Chapter 6.

1.1 General idea

Artificial intelligence has become an important part of our lives. Deep learning

models help us searching the information, translate sentences into different lan-

guages, talk to us and recommend new products, books and courses to buy. They

may even save our life and detect dangerous diagnoses when a doctor may miss

them.

Nowadays, one of the main achievements in deep learning is the possibility to

use models that know some general things about one domain (for example, about

texts, images or speech) and then apply them on a specific task. These tasks may be

different, for example, it could be handwriting recognition or text summarization.

Some of these tasks do not have a lot of training data and require periodic updates

from the models they use. An example of such a task is the virtual keyboard on

mobile phones which predicts the next word that a user would type. This task

requires constant updates because of the language changes and it also uses the data

from many different devices (users’ phones) which cannot be shared easily.

All of this gave rise to the idea of implementing an algorithm that does not

need many examples for learning a new task, already knows some general features

of a natural language and shows good results in the situation when we need to

train different models for different users. This is how we came to the three main
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approaches used in this work: exploiting the pre-trained models, few-shot learning

approach and federated learning approach.

1.2 Federated Learning and NLP

Federated learning is a powerful machine learning technique that is used in con-

ditions when there are several sources of data (devices, for instance), but these

sources cannot be combined due to various reasons (the most common reason is

data privacy). For example, several phones with the data about their users may be

regarded as the sources of the data, and they cannot be shared because of the con-

fidentiality of the data on them. This technique involves training separate models

on each device and then combining them without sharing the data (see figure 1).

The quality of the combined (central) model is better than the one of the separate

models. Additionally, this way of training reduces power consumption.

Figure 1: Federated learning concept.

Natural Language Processing (NLP) has been a core application domain of

Federated Learning since its first appearance in 2016[16]. One of the main reasons

is that language data often contains information that is considered confidential.

In addition to this, NLP models also benefit from being adapted to specific users

and contexts as the speech is individual [3] and each person realizes their language

knowledge differently, so it is more preferable for a model to be adapted not only
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for the language in general, but also for each device (with its unique user). Finally,

Federated Learning allows leveraging the large amounts of available data.

1.3 Pre-trained models as a ready-to-use solution

Since Federated Learning was proposed by Google researchers in 2016 [16], the NLP

field has undergone major changes, arguably starting in 2017 with the introduction

of the Transformer Model [26].

The Transformer is a deep learning sequence-to-sequence model that quickly

became ubiquitous in NLP right after it has been introduced. It takes as an input

a sequence (for example, a text) and transforms it in a required way. It is achieved

due to its architecture which consists of an encoder and a decoder. The encoder

converts an input into a high-dimensional representation and the decoder transforms

it into an appropriate output. One of the main applications of the transformers is

machine translation where the input sequence is a text on one language and the

output sequence is its translation on another language.

The Transformer is a large model with an enormous number of parameters and

layers which requires long training on a huge amount of data. That is why it became

popular to reuse models that were already trained on a similar (or another) task

by someone else (see figure 2). Initially, such models were used to fine-tune them

on a similar task (for example, a pre-trained model for animal classification could

have been fine-tuned for a binary classification ”photos of my dog or of a random

animal”). But later it has been shown that a model trained on a very general task

using a huge corpus is capable of understanding main features of the input data

that than may be used during fine-tuning on a more specific task. One of the most

prominent examples of such pre-trained models for NLP is BERT [4].

However, it is not the only model that is used. Nowadays, large pre-trained

models have become unavoidable in nearly every NLP application. Rich language

features that these models are able to learn through the process of self-supervised

learning on massive amounts of data become one of the key factor why these models

are so popular. These features have proved to be useful in various settings, and as a

consequence pre-trained models show state-of-the-art results in various NLP tasks,

using both the traditional transfer learning approach [21], and even using zero-shot

learning approaches [20].

Nevertheless, the original motivation for Federated Learning has not changed

since its inception, as these generic models often need to be fine-tuned on private
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Figure 2: Pre-trained models concept (NLP).

data to solve some specific tasks with a small quantity of annotations [27].

1.4 Few-shot learning

Scarcity of labelled data is a common problem in NLP tasks. Few-shot learning be-

ing a methodology that directly addresses this problem, has become a hot trend in

machine learning and tasks which have few training samples are solved using meta-

learning approaches. There are two the most popular approaches: optimization-

based approaches and metric-based approaches (examples of their usage are pre-

sented in [11] and [5] respectively).

Optimization-based approaches try to refine the weights of a model before train-

ing it, so that it could generalize faster even on few examples.

Metric-based approaches build a function that converts training examples into
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meaningful representations and then compare these vectors to the test samples. The

most similar to the test sample class is then chosen as the target one (see figure 3).

Figure 3: Metric-based approach for few-shot learning.

1.5 Objectives

Taking into consideration the fact that pre-trained models are nowadays omnipresent

in almost all NLP tasks, we would like to dedicate this project to studying the pos-

sibility of using these models in the federated setting. Moreover, we will imitate

the situation when only a few examples are available for one class in order to study

whether it is still possible to obtain a well-performing model without using a large

dataset.

To answer these questions, we experiment with two state-of-the-art few-shot

learning architectures: (1) Induction Networks (IN), which do not exploit large pre-

trained models, but are specifically designed for few-shot learning, and (2) BART-

MNLI, which is a representative model of the family of mainstream large pretrained

NLP models. All the code corresponding to the experiments can be found in the

public repository1.

We evaluate both models on a standard sentiment analysis benchmark on which

large pretrained models excel. To add to that, this particular benchmark has already

1https://github.com/e-lubrini/supervised-project-nlp
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been used to assess few-shot learning algorithms, which enables comparison with

previous work.

Our experimental results confirm that the aforementioned models can indeed

benefit from a federated learning setting, although the classical federated averaging

method does not outperform simple model ensembling techniques in our context.
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Chapter 2

Related Work

2.1 Few-Shot Learning

There exists a standard sentiment analysis benchmark for evaluation of the few-shot

learning systems. This benchmark was created on the basis of the Amazon reviews

dataset [1] and contains reviews of 23 product domains. When using this dataset,

we follow the experimental protocol proposed in [29].

Several algorithms were tested on this dataset among which there are: CNN,

Fasttext, holistic MTL-CNN, Matching Network, Prototypical Network (all these

models were used as a baseline in [29]), ROBUSTTC-FSL [29], Graph Network,

SNAIL, Relation Network (these models were used as a baseline in [6]), Induction

Network (IN) [6].

Current state-of-the-art results for the Amazon Review dataset are reported

in [6], where the IN is introduced. The result reported in this paper is 85.6% of

accuracy, which we, despite our best efforts, were not able to reproduce. The best

result that we obtained with their model is 83.9% and this accuracy remains the

state-of-the-art result according to their paper. The difference between the results

may be explained by the different conditions in which the experiments were made

(different batch size, GPUs, etc.).

This paper also explains the ability of INs to predict a new class after fine-

tuning on a few examples only. The general idea behind the Induction Network

consists in the construction of a model which is able to represent texts as vectors

in a meaningful way and a function that will output the similarity between two

vectors. A model is then used for converting training examples into vectors which

are compared to the vector of a test sample using the similarity function. By doing

this, we can understand which class is more similar to a particular test sample and,

consequently, to which class it belongs.

More specifically, the IN consists of 3 parts: an Encoder Module, an Induc-

tion Module and a Relation Module. The Encoder Module is a biRNN with self-

attention. It is used to encode class examples (during training) and queries (at test

time) into embeddings. Then the Induction Module combines all the embeddings

belonging to the same class into a single class vector. Finally, the Relation Module
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computes the similarity between the query and each of the classes. The graphic

representation of the algorithm is shown on the figure 4.

Figure 4: Induction Network architecture.

2.2 Transfer Learning

Models that have not been designed for a sentiment analysis task specifically, but

have been trained on very large datasets, such as GPT-3, T5 and BART [13], may

8



also be used for few-shot learning using the aforementioned dataset. All of these

models are generative, i.e. when they receive an input which is a sequence, their

output is also a sequence which they generated with regards to the input. Such

models may actually give satisfactory results on sentiment analysis even without

any prior training for this particular task (zero-shot learning) [24]. Another way of

using them is the prompt programming where the aim is to create such an input

sequence which will lead a model to predict the adequate result. For example, if we

want a generative model to summarize a text, the good prompt could be a text to

summarize and an additional beginning of a new sentence at the end ”in short, ”.

These models perform well both in zero-shot and few-shot learning settings when

adequate prompts are provided [22].

We adopt this widely used NLP paradigm in our experiments by exploiting the

BART-MNLI model1. BART (Bidirectional and Auto-Regressive Transformers) is a

denoising autoencoder for pretraining sequence-to-sequence models, which has been

trained for reconstructing the original text from the corrupted one. The corruption

is made by (1) replacing one (or several) token with a mask, (2) deleting the token,

(3) changing the order of sentences, (4) rotating the document so that it starts from

a particular token inside it. The BART model consists of two parts: an encoder

and a decoder (see figure 5). An encoder takes as an input a corrupted text and

transforms it into a vector which is then used as an input for the decoder. The

decoder is trying to generate the original sequence from this representation. Both

encoder and decoder are transformer models. This model is particularly useful

for text generation and machine translation, but it also shows good results on

the comprehension tasks. For the comprehension tasks the input text is given

unchanged to the encoder part and then also used in the decoder. The prediction is

made using the last symbol of the sequence which was ”</s>” during the original

training, but is changed during the training for other tasks. The success of BART

model may be explained by the fact that, when it learns how to restore the corrupted

texts, it captures valuable patterns that appear in the natural language and then

is able to reuse them during the fine-tuning stage.

We are going to use the BART-MNLI model (MNLI stands for Multi-Genre

Natural Language Inference) which has been trained on a language inference task,

and which we fine-tune on few sentiment analysis data using few-shot learning.

The aim of the natural language inference task is to predict whether in the pair of

sentences, the first one entails the second one, contradicts it or is neutral towards

1https://github.com/pytorch/fairseq/tree/master/examples/bart
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it. It has been already proven that BART trained for this task shows competitive

results on the topic, emotion and situation detection, so we believe it will also

perform well on the sentiment analysis task.

2.3 Federated Learning

Federated Learning has already been proposed in NLP for word prediction in the

context of typing text on a mobile phone [8]. Federated learning has also seen its

success on sentiment analysis. It was tested on the dataset of tweets Sent140 [2] by

means of different federated learning algorithms, such as FedProx[14] and DOSFL

[30]. Results on the one-shot learning setting were also obtained for this dataset[7].

We hereby propose to extend this approach to a large state-of-the-art BART

pretrained model, to be fine-tuned in a few-shot setting for text classification.

2.4 Ensembling

An exhaustive introduction to various methods of ensemble learning was presented

in [10]. In our work we consider two of them: Averaging and Stacking.

Averaging appears to be a very simple, but still effective way of improving the

quality of a model. It consists in training several models on one dataset and then

averaging its predictions. This approach has been shown to be effective for the

neural networks in general [17] and for the one-shot learning setting in particular

[7].

Weighted averaging is a variation of the simpler uniform averaging (which is

itself, a special case of weighted averaging). Weighted averaging allows biasing

the final decision of the ensemble towards the individual decisions of the stronger

models within the ensemble.

Stacking consists in training several models that are ”stacked” on top of one-

another, i.e. models that consume the outputs of other models or produce the

inputs of further models. To train a stacking ensemble, a collection of base models

are trained in an ordinary way, the predictions of these base models are then used

as input features for a meta-learner (which can itself be an ensemble), the predic-

tions of the meta-learner may be used as the output of the stacking ensemble, or

alternatively be used to train a further meta-learner. This process may be repeated

several times, the models trained in such a way show very competitive results on

various NLP tasks including sentiment analysis [25].
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Chapter 3

Methodology

Our experiments consist in the study of few-shot learning in a federated setting. We

distribute the data across a number of nodes (representing devices in a federated

setting) each of which is then used to train a separate model.

We experiment with two different architectures: in the first experiment, each

node was trained using an IN [6], and in a second experiment pretrained BART

models [13] were fine-tuned.

In order to accommodate the needs and limitations of each architecture, the

dataset was distributed across the nodes in two different ways, depending if we

were training and testing (1) the IN (Section 4.1.1), or (2) the BART model (Section

4.2.1).

In each of the two experiments, once the models were trained they were used to

instantiate three ensemble learning methods: simple averaging, weighted averaging

and stacking. The results were then compared to the corresponding baselines: the

results of the Induction Network reported in [6] (SoTA) for the first experiment,

and zero-shot [12] learning with BART models for the second experiment.
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Chapter 4

Experiments

In this chapter the details about the datasets and the training process of the In-

duction Network (4.1) and BART model (4.2) are described. The obtained results

will be presented in the last section (4.3).

All experiments were realized on the Amazon Review dataset [29]1, which is

composed of positive and negative reviews divided into 23 (products) × 3 (sub-

tasks) = 69 binary tasks. The three sub-tasks are defined according to the number

of stars that are required for a review to be considered ”positive”. In the first sub-

task, the positive class is assigned only to the 5-star reviews, in the second one -

to the 4 and 5 star reviews, in the third one - to the reviews which have 2, 3, 4

or 5 stars. Following [6], we use 4 products (books, dvd, electronics and kitchen

housewares) for testing: test accuracy is computed on 21, 064 samples, while only 30

samples per test product are available for few-shot learning. The other 19 products

are used to train the IN baseline.

We used macro-average accuracy as a metric for all our experiments following

the evaluation protocols from [6].

For the implementation, we used python 3.6 as a programming language. Among

the libraries that we used, the most important are: pytorch [18], transformers [28],

scikit-learn [19] and numpy [9].

4.1 Induction Network

4.1.1 Dataset

For our federated experiments, we assume that data regarding the 19 products, is

not stored as a single dataset, but divided into three private nodes shown in the

table 4.1.

4.1.2 Baseline

As a baseline for the Induction Network we used the IN trained in [6] on the full

train set of 19 products.

1The dataset is available at https://github.com/Gorov/DiverseFewShot Amazon.
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Node Number of examples Categories

1. 23105 apparel, office products, automotive, toys games,

computer video games, software

2. 18146 grocery, beauty, magazines, jewelry watches,

sports outdoors, cell phones service, baby

3. 54333 outdoor living, video, camera photo,

health personal care, gourmet food, music

Test 21064 books, dvd, electronics, kitchen housewares

Table 4.1: Partitions of the dataset assigned to each node in the IN experiments.

4.1.3 Experimental Settings

The experiments involving the Induction Network are all dedicated to exploring to

what extent (if at all) the performance of the state-of-the-art few-shot IN decreases,

when trained in a federated learning setting. Next, we reuse the implementation

of the Induction Network by Zhongyu Chen2 with the default number of training

epochs equal to 10000.

We evaluated two different ensembling methods: simple averaging of the output

probabilities of the ensembled models, and Stacking (both explained in Section

2.4). For the approach of Stacking, the baby category from Node 2 was moved to the

central node and used for training the meta-learner. We tried using several standard

machine learning algorithms as the meta-learner: logistic regression, decision trees,

support vector machines and multi-layer perceptron. Logistic regression had the

best performance on the baby category and the results with this algorithm are

reported in Table 4.3.

4.2 BART

4.2.1 Dataset

The objective of this experiment is to study whether a large pretrained state-of-

the-art NLP model that is adapted to a specific task through few-shot learning may

benefit from a federated learning setting. Conversely to the previous experiment,

the Amazon Review training corpus is not used here, as BART is typically used

directly as a zero-shot or few-shot learner. Thus, we rather consider four separate

2https://github.com/zhongyuchen/few-shot-text-classification
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private datasets, one for each of the four test products (books, dvd, electronics and

kitchen houseware), with only 30 labeled samples per dataset (Table 4.2).

Node Ex. Categories

1. 30 books

2. 30 dvd

3. 30 electronics

4. 30 kitchen housewares

Test 21064 books, dvd, electronics, kitchen housewares

Table 4.2: Portions of the dataset assigned to each node in the BART experiments.

4.2.2 Baseline

As a baseline, we use a zero-shot learning strategy, i.e., we evaluate BART-MNLI

model3 on the test set without any prior training. To make it work we reduce

the problem of sentiment analysis to natural language inference (NLI, which is the

task BART-MNLI was trained for). This reduction is implemented by making the

sentence the premise and taking either the string ”This text is positive” or ”This

text is negative” as the hypothesis. If BART-MNLI predicts an entailment with

the former hypothesis a positive sentiment will be predicted, and if it predicts

entailment with the latter a negative sentiment (see figure 5).

The corresponding zero-shot learning accuracy is shown in Table 4.4.

4.2.3 Experimental Settings

For our experiments, BART-MNLI was fine-tuned independently on each private

dataset, yielding 4 adapted models, one for each domain.

Hyperparameters for BART were selected manually after several experiments

on a development corpus. The development corpus is composed from the examples

of one of the domains that was not used for training - automobiles. It contains 601

training examples and 66 test examples.

We tried three fine-tuning strategies: (1) fine-tuning the full BART model, (2)

fine-tuning only the first self-attention layer, (3) fine-tuning the inputs, outputs

and layer normalization, following [15]. The first strategy was chosen for the final

results .

3https://huggingface.co/facebook/bart-large-mnli (accessed on April, 1st, 2021)
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Figure 5: BART MNLI model architecture for the sentiment analysis task.

For fine-tuning the full model the following parameters are used:

• loss function: cross-entropy loss

• optimization function: stochastic gradient descent,

• learning rate: 10−4,

• number of epochs: 100

Finally, these 4 models are combined using 4 different strategies: (1) simple
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uniform averaging of their output probabilities, (2) weighted averaging4, (3) stacking

with logistic regression as the meta-learner and federated averaging [16].

4.3 Results

Table 4.3 shows the results obtained with the Induction Network. It reports the

baseline accuracy published in [6] and reproduced in our experiments. Despite our

best efforts, we have not been able to exactly reproduce the results in the paper.

The difference is likely to be due to differences in the experimental setting (such as

types of GPU).

The results marked as Node 1, Node 2 and Node 3 report the accuracy of the

baseline models trained only on the data available on each of the three nodes.

Results of the federated central model are also reported in the table. There are

two of them: averaging of 3 nodes and stacking of three models with the logistic

regression as the meta-learner.

Table 4.4 reports the results for the BART model. Columns correspond to (1)

the model that was used, (2) mean accuracy of a model on the whole test set and

(3-6) mean accuracy on each of the 4 test domains. ZSL corresponds to the baseline

result (BART model used without any training). The accuracy of 4 nodes (books,

dvd, electronics, kitchen housewares) on the full test set is shown in the following

4 rows. The results obtained with various ensemble methods (simple averaging,

weighted averaging, federated averaging, stacking with logistic regression) are also

reported in this table. The values in bold are the best values on the corresponding

test set (column names).

The values between parentheses in Table 4.4 give the standard deviation after 5

trials. The 90%-confidence interval according to the Wald test is ±0.48%.

4Weights were selected manually after several experiments on the development corpus. The

best accuracy was obtained with the following weights: books=0.1, dvd=0.3, electronics=0.4,

kitchen=0.2
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Model Mean Accuracy (%)

Node 1 83.5

Node 2 83.3

Node 3 83.1

Averaging 84.6

Stacking 84.6

Reproduced model from [6] 83.9

Result reported in [6] (SoTA) 85.6

Table 4.3: Results obtained with Induction Network from [6].

Model MA Books DVD Electronics KH

ZSL 83.0 82.7 80.2 84.3 84.8

Books Node 85.1(±0.23) 86.4(±0.2) 83.4(±0.29) 85.0(±0.23) 85.3(±0.33)

Dvd Node 85.2(±0.11) 86.8(±0.1) 83.9(±0.34) 85.0(±0.22) 85.5(±0.29)

Electronics Node 84.4(±0.39) 84.4(±0.87) 82.1(±0.68) 85.3(±0.23) 86.1(±0.15)

Kitchen H. Node 85.6(±0.12) 86.5(±0.22) 84.8(±0.37) 85.2(±0.22) 86.2(±0.17)

Avg of 4 nodes 86.0(±0.0) 86.9(±0.1) 84.8(±0.1) 86.1(±0.1) 86.0(±0.1)

Weighted Avg 85.8(±0.0) 85.4(±2.7) 83.6(±1.8) 87.4(±3.0) 83.5(±5.1)

Federated Avg 85.7(±0.0) 86.8(±0.2) 84.5(±0.1) 85.7(±0.1) 85.9(±0.1)

Stacking 86.3(±0.0) 87.5(±0.1) 85.3(±0.1) 86.1(±0.1) 86.5(±0.0)

Table 4.4: Results obtained with BART.
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Chapter 5

Discussion

The results reported on the Induction Network support the idea of ”wisdom of the

crowd” [23] that underlies the ensemble learning strategy. One may observe that

three separate IN models show weaker performance compared to the simple average

of their predictions (averaging improves the performance by 1.1% compared to the

best single node model).

The results obtained by means of stacking also show that it is possible to deduce

some useful information from the models’ predictions using an additional trainable

algorithm. Another important observation is that ensemble learning techniques are

able to perform even better than a single model that has seen all the available

training data. In fact, each of the three models that were used for ensembling have

seen only around 30, 000 examples each, while the reproduced model was trained

using around 95, 000 examples were used to train .

As for the pre-trained models, the experiments on the separate nodes have shown

that the BART model trained on the kitchen housewares (KH) examples perform

better than others. Kitchen housewares node adds from 0.1 (the KH node compared

to the electronics node on the kitchen housewares test set) to 2.7 percents (the KH

node compared to the electronics node on the dvd test set) to the performance on

different parts of the test set. It might be related to the fact that the KH train

set contains examples of various length, so they represent more types of texts than

other training sets (one of the facts that support this hypothesis is that mean length

of the text in the KH set is 108, while it is 112 for books, 66 for electronics and 149

for dvd). In addition to this, the KH train set has the most stable percentage of

words that occur both in this set and in each of the test sets.

Apart from the comparison of the results of the separate models, there are also

several important insights about the task solved in this project.

Firstly, when the BART results are compared to the ones from IN, one may

observe that the BART pre-trained model performance is comparable to the one of

IN even without any training. Zero-shot learning with the BART model gives 83.0

accuracy while the Induction Network trained on 95, 584 examples shows 85.6 (or

83.9 according to the reproduced model).

Secondly, even 30 training examples is enough to improve significantly the results

of the BART model. For example, training on the books domain adds 2.1 points to

18



accuracy.

Moreover, combination of the models trained on 30 different examples also im-

proves the overall performance of the model. Even simple averaging of the pre-

dictions of the four BART models gives an improvement ranging from 0.4 to 1.2

percent when compared to the separate nodes and 2.6% when compared to the

baseline (Zero-shot learning setting).

Contrary to ones expectation, the Federated averaging strategy, usually used

when training the models in the federated settings, does not perform better than

standard ensemble learning techniques.

The differences between the vocabulary of the domain might have caused dif-

ferent parameters to be optimized. This implies that separate models were trained

better with the coherent optimization of their own weights. When we used feder-

ated averaging, the central model tried to average the parameters which led to the

degradation of the model’s generalization ability and the training domains differing

to this extent.

Our experiments indicate that stacking is the best strategy to combine the pre-

trained models. A possible hypothesis that explains this result is that the meta-

learner is able to learn deep dependencies between the four BART models predic-

tions, in contrast to static heuristics such as averaging that cannot adapt to provide

the best performance.
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Chapter 6

Conclusion

Large pretrained models are ubiquitous in all mainstream approaches in NLP, nowa-

days. The amount of English knowledge derived from them allows use in zero-shot

or few-shot settings with various tasks. In our experiments, we researched the task

of sentiment analysis in English, in which these models have been so far proven

to excel. It is also often desirable to adapt such generic models to a specific user,

task, or domain, and one research question we are raising in our work is whether

several such models that have been trained to private datasets can be combined to

build a better one. Another related research question we are addressing is whether

a state-of-the-art few-shot model could benefit from being instantiated multiple

times in a federated setting and then recombined to achieve better results. Both

of these questions can be answered positively, given the remarkable performances

of the BART models both in zero-shot and few-shot settings. However, our experi-

ments failed to show any considerable advantages in the use of a federated averaging

algorithm, compared to simple model ensembling strategies. In future works, these

comparisons could be consolidated with more advanced federated learning algo-

rithms. Furthermore, the target application domains (and languages) should be

extended from sentiment analysis to other tasks that shall be more challenging for

large pretrained models, in order to potentially identify various experimental con-

texts where federated learning may provide further contributions to these generic

models. Following the analysis of some of our experiments, we submitted a paper

to the European Symposium on Artificial Neural Networks (ESANN) for their 2021

conference, which is still waiting for approval.
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