
Université de Lorraine IDMC ATILF

MSC Natural Language Processing
UE 805 – Supervised Project

Realization Report

Database Creation For The
Lex.E.M Project

Academic Year: 2020-2021

Host Organization: ATILF

Students:

Morgan RUIZ-HUIDOBRO

Soklay HENG

Supervisors:

Etienne PETITJEAN

Marie Laurence KNITTEL

Samantha RUVOLETTO

Reviewer:

Bruno Guillaume

June 18, 2021



Contents

Abstract 2

Introduction 3

1 Presentation Of The Subject 4

1.1 Relational Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Henkeler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Kern-French . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3 Lyon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.4 Standford-French . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.5 CoLaJE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.6 JEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Data Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 NLP Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Work Done 9

2.1 Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Data In Corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Extraction Of Data From XML . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 First Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Second Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.3 Third Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Issue Caused By NLP Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 1st Alternative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.2 2nd Alternative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.3 Alternative Chosen For The Database . . . . . . . . . . . . . . . . . 13

2.5 Schema Of Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Database With SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Discussion 17

4 Conclusion 17



Annexes 19

Bibliography 28

June 2021 1/29



Abstract

The main objective of the Lex.E.M project and literature review have been introduced

in the bibliography report of the first semester. We then continued our work by getting

deep down into technical part and made the concept become reality. This report will

resume the work realized by us during our participation to the Lex.E.M project. Technical

steps will be introduced in this realization report. Our role was to create a database

containing data on the language production of children of age 2 to 3. The database was

created from 6 different corpora, 4 from CHILDES , one from Colaje and the JEMS

corpus for the last one. The goal of the Lex.E.M project with this database is to develop

remediation tools for children with language-related difficulties.

June 2021 2/29



Introduction

The supervised project consists in the elaboration of a database containing children’s

real language production for the Lex.E.M1 project.

The Lex.E.M[1] project is realized in collaboration with kindergarten from the REP2.

The need for the project comes from an observation by teachers; lexical deficiencies have

been observed for some children in comprehension and production. This can be explained

by the fact that those schools have children with really different profiles and numerous

allophone children with or without knowledge of French.The end goal of the project is

to create remediation tools that support lexicon access for children between age 2 and 3.

Having a new corpus containing language production of children in school was a necessity.

Before the creation of the JEMS corpus by the Lex.E.M project, no other data were

available on the language production in school context for French-speaking children. The

recording took place in different school from non REP area.

This supervised project represents the second step of the lex.E.M project, meaning

the creation of a database. The database we had to create intended to represent most

accurately the language production of children. Therefore, it needed to contain information

related to phonology, morphology, and lexical information.

This report will illustrate the process of creation of such database. Consequently, we

will discuss topics including relational database, extraction of data, linguistics tools and

SQL. Firstly, we will present the different topics we have encountered during the project,

and we will talk about their applications in our work. Then, we will present the different

steps we took to create the database containing the necessary information we wanted to

have in the database.

1lexicon for kindergarten
2reseaux d’éducation prioritaire

June 2021 3/29



1 Presentation Of The Subject

This section will briefly present the topics seen during the development of the database.

For the sake of your understanding, we will introduce some relevant concepts. That way

you will be familiar with them when we will talk about the work we have done during the

supervised project.

1.1 Relational Database

The first subject we need to address is the creation of a relational database[2] which

is the main goal of this supervised project.

Databases are sets of data that have been structured, for example into multiple tables

where columns hold the attributes of the data. Relational database means that some data

attributes are related to one another. A database enables us to find information more

easily by the structure itself. Getting access to the data of a database is facilitated by the

tables. We, therefore, can query3 a special element of our data. We will discuss more in

details about information retrieval in the SQL4 part of our report.

A table contains multiple columns. These columns can contain different keys for each

table. A primary key is generally used in tables; it is employed to create a unique value,

and this value can’t be null. When creating/inserting a new row to the table, this unique

value is attributed. That way when the system accesses the table, it will use this primary

key to access the data stored. A foreign key is used to link the data between one table to

another. Usually, the foreign key of one table refers to the primary key of another table.

Figure 1: Example Of Relational Database

3request for data from a database table
4structured query language

June 2021 4/29



One example has been provided to illustrate this, as can be seen in the figure [1],

the table “purchase” is linked to two tables thanks to the foreign keys named “buyer”

and “seller”. The key “seller” known as foreign key in the “purchase” table is linked

to the primary key of the table “seller”. The key “buyer” known as foreign key in the

“purchase” table is linked to the primary key of the table “client”. Each table contains

different information. With this sort of database, we can find the purchase made by

certain client, or the sale done by a certain seller. We can even find what item people over

a certain age purchase. This sort of relational database could allow market study.

1.2 Corpus

The definition of a linguistic corpus we can give for our project is a collection of

language production.

Our database contains data from 6 different corpora. From the CHILDES[3] dataset,

we have chosen four datasets named Hunkeler, Kern-French, Lyon and Standford-French.

We will also include the CoLaJE5 and JEMS dataset. All the corpora collected have

already been annotated and come in XML format. Some of the corpora selected are

available in free access on the ortolang[4] website.

1.2.1 Henkeler

The Henkeler[5] dataset comes from a study realized by Hervé Hunkeler. This corpus

is the result of research on the development of early lexicon. He followed the development

of dizygotic twins, Camille and Pierre. He recorded their interaction with their mother

when the children were in between age 1,6 and 2,6.

1.2.2 Kern-French

The Kern-French[6] dataset compiles the language production of four children Bap-

tiste, Emma, Esteban and Jules. The data was collected every two weeks and consists of

1 hour of spontaneous speech from children whose ages are between 0,8 and 2,1 years old.

The recording took place in the children’s home. The data was phonetically transcribed

in API6.

5communication langagière chez le jeune enfant (language communication of young children)
6International Phonetic Alphabet

June 2021 5/29



1.2.3 Lyon

The Lyon[7] corpus contains audio/video recording of five French-speaking children

from age 1 to 3. In our database we will use the data collected from Anäıs, Marie, Nathan

and Theotime. The recording took place in the children’s home, producing spontaneous-

speech. Each child was recorded for 1 hour every 2 weeks. The corpus has been transcribed

in API. The goal of the project was to study early phonological and morphological devel-

opment.

1.2.4 Standford-French

The Standford-French[8] contains speech production of six children from age 0,9 to

1,7. This database has been used to analyse phonetic tendencies in the early stage of

language development.

1.2.5 CoLaJE

The CoLaJE[9] corpus consists of audio/video recording. The children were filmed 1

hour each month. The data is phonetically transcribed. The goal of the project was to

build a database with children’s production from birth to age 7. The aim was to collect

new french data, to improve the transcription system, and to study the development of

grammatical tools used by children. The objective was also to analyse the data to find

regularities in acquisition for each child and also across children.

1.2.6 JEMS

The JEMS[1] corpus contains recording of speech production of children in a standard

school environment. The data was transcribed in API. The goal of the corpus was to

provide information on the language used by children in school. In the long run, the

data will enable the creation of remediation tools to help children with language-related

difficulties.

1.3 Data Extraction

Extracting the necessary contents to include into our database is also a crucial step

for the supervised project. The different corpora utilised stocked the data in XML files.

XML is a markup language[10]. It stores information through the use of tags, and the

document is structured thanks to that. Throughout our NLP master’s course, we have

been introduced to a Python library named “Beautiful Soup”[11] to parse and retrieve

June 2021 6/29



data from XML file. The data can be extracted from XML files by other methods, but

we will focus on using “Beautiful Soup” during our project. The “Beautiful Soup” library

offers a XML parser. Once we parse the document, we can navigate the parse tree with

the function find() and findall() of the module. The tree of our XML file looked like

the schema [9] in annex. The branch “participant” gives information about the different

people speaking. The branch “u” contains the data related to speech with sub-branches

called “orthography”, “ipaTier” and “groupTier”. From the branch “u”, we can extract

lexical, phonological and morphological information.

1.4 NLP Task

During our supervised project, we have also gone through different NLP tasks, such

as tokenization7, Part-of-speech tagging8, lemmatization9 and regular expression10.

The tokenization, POS-tagging and lemmatization were handled by “TreeTagger”[12].

It is a system developed by Helmut Schmid in the TC project at the Institute for Com-

putational Linguistics of the University of Stuttgart. We can use TreeTagger in a Python

environment thanks to the Python library “treetaggerwrapper”[13]. This tool comes with

a function taking as input text and returning part-of-speech tag and the lemma for each

token of a sentence.It supports many languages, including French which is the language

we are working on and and is adaptable to other languages if there is an availability of a

lexicon and a manually tagged training corpus for those languages.

The regular expression was handled by the Python module “re”[14]. We used it when

we parsed the XML file. We needed regular expression when we extracted the dates (date

of recording, age ,birthday) and to change their format.

7tokenization: separates piece of text into smaller units called tokens. A token can be a word, characters

or sub-words.
8Part-of-speech tagging: marks a word in a text with the corresponding part-of-speech information

(based on the definition and context). It is linking a word to its grammatical category, such as noun, verb,

adjective, adverb, etc.
9lemmatization: marks a word in a text with its lemma. A lemma is the base form of a word, a word

without trace of inflexion. We can form many related words from lemma.
10regular expression: sequence of symbol and character where a pattern can be found and searched

within another string.

June 2021 7/29



1.5 SQL

Structured Query Language known as “SQL” is a standard language used to store,

manipulate and retrieve data in databases[15]. SQL is used to communicate with a

database.

For this supervised project, we decided to work with “MySQL” to create the database

although there exists many database systems to manage database, such as SQL Server,

MS Access, Oracle, Sybase, Informix, Postgres, etc. This is due to the fact that MySQL

is fast and is an easy-to-use relational database management system based on SQL. In

addition to this, it is open-source and free to download.

To interact with the databases, multiple SQL[16] statements are used. ‘SELECT’

allows the extraction of data from a database and from specific table. ‘UPDATE’ ma-

nipulates the data already present into the database; it is updating the data already

exist there. ‘DELETE’ also manipulates data from the database; it deletes data from

a database. ‘INSERT INTO’ is a statement used to insert new data into a database.

‘CREATE DATABASE’ allows the user to create a new database. ‘ALTER DATABASE’

modifies a database already created. ‘CREATE TABLE’ is useful to create new tables

into the database. ‘ALTER TABLE’ modifies a table already existing. DROP TABLE

deletes a table of a database.

June 2021 8/29



2 Work Done

This section will illustrate the different steps we took along the project. It will

thoroughly describe how each task was achieved.

2.1 Pipeline

Below is the pipeline from the data extraction from XML files to the final result.

Figure 2: Pipeline

In order to keep track on our progress during the realization part of the LeX.E.M

project and to complete it successfully, we have drawn a pipeline with the following steps.

The first step that has been taken into account is the retrieval of data that will be used

later in the implementation part. This step involves extracting important information

from XML files, using “Beautiful Soup” Python module. Following that, we utilized the

linguistic tool named “TreeTagger” to do part of speech tagging and lemmatization au-

tomatically. Once the data pre-processing part was completed, the next important step

was to design a database schema. The database needed to be structured in a certain way

to include all the information coming from the XML files. Following this, we needed to

install MySQL and establish a connection between the server and Python. Then, the next

step was to create a database and to import data into the database. Finally, we had to

verify the result by making database queries to ensure that the database really contained

the information we wanted to implement and was designed correctly.

More details on how each step was achieved will be illustrated in the later section of

this report.

June 2021 9/29



2.2 Data In Corpus

All the corpora have the same structure, but it doesn’t mean they contain the same

information. The following table recapitulates the information contained in the XML files

for each collection of data.

Figure 3: Corpus Content

The kernFrench and Standford collections of language production contain only the

language production of children but not the production of their interlocutor. The other

collections recorded the interaction between the participants. It is also important to

be aware that lexical units are sometimes annotated as unintelligible. Nonetheless, an

occurrence can have an undefined lexical unit but still has phonological information.

2.3 Extraction Of Data From XML

All the corpora are presented in the same format. They are composed of XML files

with the same root tree (see figure [9] in annex).

We have extracted the data to insert into the database successfully thanks to the

Python module named “Beautiful Soup”. Beautiful Soup is a Python library which is

helpful for data retrieval from HTML and XML file format. Beautiful Soup can be installed

by running the following command in the terminal.

1 pip install beautifulsoup4

Once the module has been successfully installed in the terminal, we can use the func-

tion by importing the module to our Python environment11 using the following command.

1 from bs4 import BeautifulSoup

Three functions were created to extract data in the most efficient way. The extracted

data was stored in a pandas DataFrame. Pandas is a Python library used to handle

data[17]. Pandas can be used to plot data and is also useful to display data in tables.

Pandas can be installed by running the following command in the terminal.

11python environment: we used Jupyter Notebook

June 2021 10/29



1 pip install pandas

Once the module has been successfully installed in the terminal, we can use the func-

tion by importing the module to our Python environment using the following command.

1 import pandas as pd

We will now describe all the extraction function created one by one in the following

subsections.

2.3.1 First Function

The first function we created was to extract information on the XML file itself. It

returns a pandas DataFrame with the columns ‘file name’, ‘content’ and ‘link’. They

respectively refer to the name of the file, the whole content of the file and the link where

we can find the database. All the data in the table are of string datatype. The commented

function can be found in annex (code [1]).

2.3.2 Second Function

The second function retrieves data on the different participants speaking in the file.

It returns a pandas DataFrame with columns named ‘id’, ‘role’, and ‘age’. They respec-

tively refer to the id given to the participant in the file, the role of the participant (target

child, mother, teacher...) and the age of the participant at the time of the recording. All

the data in the table are of string datatype. The format of the age extracted was changed

to a format “yyyy/mm/dd”. The commented function can be found in annex (code [2]).

The function had to be adjusted slightly for the Standford-French collection. The date of

recording and the date of birth were noted differently compared to other collection. So,

the only modification we needed to make was in the regular expression that searches the

pattern of the dates.

2.3.3 Third Function

The third function retrieves data related to the sentences. This function returns two

different pandas DataFrames.

The first DataFrame contains three columns named, ‘sentence id’, ‘speaker’ and ‘sen-

tence’. They refer respectively to the id given to a sentence in the file, the id of the

participant speaking, and the sentence uttered.

The second DataFrame contains nine columns named, ‘sentence id’, ‘speaker’, ‘sen-

tence’, ‘word’, ‘ipa-actual’, ‘ipa-model’, ‘POS’, ‘lemma’, and ‘morphology’. The first three

June 2021 11/29



columns contain the same type of information as those in the first DataFrame. The other

columns refer to:

• Word = token of a sentence.

• IPA Actual = transcription in IPA of the actual phonological production of a par-

ticipant.

• IPA Model = transcription in IPA of the ideal phonological production of the token.

• PoS = Part-of-speech tag of the token.

• Lemma = lemma of the word token.

• Morphology = morphological information on the token.

The commented function can be found in annex (code[3]).

2.4 Issue Caused By NLP Tool

The tokenization used by TreeTagger seemed to be an issue for the database creation

because it didn’t correspond to the tokenization used in the XML file. Therefore, with

this issue, two alternatives were available for us.

2.4.1 1st Alternative

We keep the tokenization by TreeTagger to realize PoS tagging and lemmatization.

This method required us to separate the data into 2 tables. One table contains word, pos

and lemma, and another one contains word, ipa-actual, ipa-model and morphology. The

PoS and lemma cannot be aligned with the phonological and morphological information

since the tokens are not the same. This method presents constraint for the future use

of the database. For example, we will not be able to study the phonological aspect of

language alongside the grammatical features.

2.4.2 2nd Alternative

We keep the tokenization used in the XML file to realize PoS tagging and lemma-

tization. This method allows us to create only one table to store data on occurrences.

However it also presents a drawback. The token selected in the XML file are sometimes

not well supported by TreeTagger. This causes a token to be assigned with the wrong

PoS or lemma value. For example, the token “s’appelle” will have as PoS “NOM” and as

June 2021 12/29



lemma “s’appelle”. Since most of the utterances have been tokenized with token supported

by TreeTagger, this type of error doesn’t represent the majority. This method presents an

advantage for the future use of the database despite the error because the morphological

and phonetic data can be studied alongside grammatical data.

2.4.3 Alternative Chosen For The Database

We considered the goal of the Lex.E.M project to choose an alternative over another.

The aim is to study the language production of children to develop in the long term reme-

diation tools for children with language difficulties. Therefore, it seems to be more logical

to keep the system that allows to analyse in parallel different linguistic characteristics.

We, therefore, decided to create our database (and by our consequent data extraction)

based on the second alternative.

2.5 Schema Of Database

In order to build our database efficiently, we need to make a draft about what in-

formation had to be included in our database and what kind of relationship one table

should have with other tables. Consequently, we have designed a database schema shown

below. We have identified the datatype of each column and the relation of tables with

other tables.

Figure 4: Lex.E.M Database Schema

Our database is made up of five tables named collection, file, participant, utterance

and occurrence. All the table possess a primary key named id, and some of them have

foreign keys defining the relation between tables.

The table file has a foreign key linking it to the collection table. It allows us to

see which file belongs to which collection. The table participant and utterance have a

June 2021 13/29



foreign key making the link with the file table. It is a way to know which participant was

speaking in a file and which sentence was uttered in which file. Furthermore, the table

utterance is also associated with the table participant by another foreign key. It is linking

the utterance with the participant who enunciated it. The table occurrence is linked by

two foreign keys to the tables participant and utterance.

The linguistic content we included in our database can be illustrated as follow:

• PoS: indicates part of speech of each lexeme.

• Lemma: indicates the base form of the lexeme.

• IPA Model: indicates the expected pronunciation of a lexeme, noted in IPA.

• IPA Actual: indicates the phonological production of a lexeme realized by a partic-

ipant and noted in IPA.

• Morphology: indicates morphological annotation of each lexeme.

2.6 Database With SQL

To create the database, we had to go through multiple steps. Once MySQL server

had been installed successfully, we used Python library “mysql.connector” to use SQL in

Python. This Python module can be installed by running the following command in the

terminal.

1 pip install mysql -connector -python

Once the module has been successfully installed in the terminal, we can use the func-

tion by importing the module to our Python environment using the following command.

1 import mysql.connector

When the module has been imported to Jupyter Notebook without any error, it

indicates that the module is ready to use. Before we created the database, we need

to create a connection between MySQL and Python. We created a function taking as

parameters the input needed to connect to the server and the name we wanted to give to

our database. The code commented can be found in annex [4].

We then implemented the table presented above with the SQL statement ‘CREATE

TABLE’. The commented code can be found in annex [5].

After that, we inserted the name of the corpora into the table collection with the

function “insertcollection()”. The commented code can be found in annex [6].

June 2021 14/29



Following this, we had to create a function to insert data into the database. For

each file, the data needed to be inserted at the same time for efficiency reason. Because

FOREIGN KEY links the tables together, it was more efficient to insert data file by file to

find more rapidly the foreign key inserted previously into the other tables. We also needed

to modify the data type to insert it into the database because SQL doesn’t support some

particular data types. We encountered issue with the CoLaJE dataset while we were

querying the id to insert as foreign key value. To collect the id, we were using a SELECT

statement, and the server keeps closing before finding the value. We assume the error

came from the fact that we were processing to many occurrences by file. To resolve it, we

increased the query limit with the following command.

1 mycursor.execute('set GLOBAL max_allowed_packet =67108864 ')

Our method to create the function inserting data was to insert table by table for each

file. Firstly, we inserted data into the table file, then participant , after that utterance,

and we ended with occurrence. The 3 functions retrieving data described earlier need to

be called inside the function feeding the data. The three functions take as parameter the

path to a file. We decided to create a JSON dictionary containing as key the name of the

collection and as values the path of the files. We used JSON to store the path to feed it

later more easily to the different functions. The annotated code can be found in annex

[7].

2.7 Result

In this section, we will present some examples of data stored in the database. For each

collection, we will give example of some tables. The following table presents the example

of data extracted from the table occurrence for the Kern-French collection. As can be

seen and as we described before, the Kern-French collection contains mostly phonological

data. The notation ‘yyy’ for word means that annotators of the corpora weren’t able to

decipher a proper lexeme.

Figure 5: Extract Of Occurrence Table For The Kern-French Collection

June 2021 15/29



In the next figure, we present an extract of the table participant for the collection

Lyon.

Figure 6: Extract Of Participant Table For The Lyon Collection

The next table illustrates the data we can find in the table utterance for the Henkeler

collection.

Figure 7: Extract Of The Utterance Table For The Henkeler Collection

Once the data were completely implemented to the database, we could count 6 col-

lections, 646 files, 399149 utterances and 1304750 occurrences.

Figure 8: Database Size

June 2021 16/29



3 Discussion

The result obtained can be improved by different systems. For example, the missing

data in IPA-model could be automatically filled by a transcription system taking as input

the word. Obviously, some words noted as unintelligible could not be transcribed even

with this sort of system.

Moreover, the alternative chosen to create the database added wrong value for PoS

and lemma. A manual verification could be applied on the data. This method would be

extremely time-consuming if we take into consideration the size of the database. If other

corpora were to be added in the future, it could be a good idea to tokenize the sentence

with the same system used for PoS-tagging and lemmatization before any transcription.

Regarding another remark on the code we have realized to insert data into the

database, the function we have created takes a long time to process all the file contained

into a collection. A limitation in our abilities have hindered the creation of a faster system.

4 Conclusion

To sum up, we have successfully completed this project with satisfying result by

creating a database storing information about children real language productions, which

was the main objective of this supervised project. This database will be beneficial for

later usages with different purposes as the database we have created will serve to create

an available web interface. For the Lex.E.M project, the database will be exploited to

help children with language-related difficulty. The database can be used to develop tools

or applications that will be beneficial for children facing lexical problems. Regarding our

skills to complete this project, we have benefited from the introduction course of data

parsing using “Beautiful Soup” Python module in our first semester of our NLP master’s

course. The course on SQL we have taken during the master was also useful to understand

database query. However, we also needed to explore it more and learn new skills. Complete

this project required skills such as creating relational database with MySQL and knowledge

on the different functionality of TreeTagger. We believe that the new skills we have learnt

from this project will be beneficial for our second year of the master’s course and for our

future career path.

June 2021 17/29



Acknowledgment

We would like to thank our supervisors Etienne Petitjean, Marie Laurence Knittel

and Samantha Ruvoletto for their support and guidance during this project. We would

also like to thank them for the chance we had to work alongside them on the Lex.E.M

project. We also want to express our gratitude to Maeva Sillaire, a student in sciences of

language, who followed the project with us and helped us during the process. We also want

to express our appreciation for the opportunity, given by the master in Natural Language

Processing, to work on this initiative and interesting project as part of the curriculum.

June 2021 18/29



Annexes

Figure 9: XML Tree Example

June 2021 19/29



1 def file_(file_path):

2 #read the xml file

3 infile = open(file_path ,"r", encoding="utf8")

4 contents = infile.read()

5 soup = BeautifulSoup(contents ,'xml')

6 # branch in the file where you can find information on the file

7 doc = soup.find_all('session ')

8 # create a dictionary and a panda DataFrame to stock data later

9 dico3 = {'file_name ':'','content ':'', 'link':''}

10 k = pd.DataFrame(columns = dico3.keys())

11 #retrieve the data

12 for i in doc:

13 id1 = i['id']

14 link = i['xmlns ']

15 #dictionary with the implemented data

16 dico3 = {'file_name ':id1 , 'content ':contents ,'link':link}

17 #add data to the DataFrame thank to a dictionary

18 k = k.append(dico3 , ignore_index=True)

19 #return the panda DataFrame

20 return(k)

Listing 1: File Function

1 def participant(file_path):

2 #read the xml file

3 infile = open(file_path ,"r", encoding="utf8")

4 contents = infile.read()

5 soup = BeautifulSoup(contents ,'xml')

6 # branch in the file where you can find information on the participant

7 p = soup.find_all('participant ')

8 # branch where the date of recording is mentioned (to calculate age

later)

9 f = soup.find_all('header ')

10 for j in f:

11 dater = j.find('date')

12 # create a dictionary and a panda DataFrame to stock data later

13 dico ={'id':'', 'participant_role ': '', "participant_age":''}

14 participants = pd.DataFrame(columns = dico.keys())

15 #retrieve the data

16 for i in p:

17 id1 = i['id']

18 role = i.find('role')

19 if role != None:

June 2021 20/29



20 role = i.find('role').contents

21 age = i.find('age')

22 # reformulate the age of the participant if the age is mentioned

23 if age != None:

24 for x in age:

25 m= re.match(r'^P(\S+)Y(\S+)M(\S+)D(\S+)', x)

26 age = m.group (1)+'/'+ m.group (2)+ '/'+ m.group (3)

27 # in some data the age was not mentioned but we calculated it base

on birthday information

28 else:

29 birthday = i.find('birthday ')

30 if birthday != None:

31 for x in birthday:

32 m= re.match(r'^(\S+) -(\S+) -(\S+)', x)

33 bday = date(int(m.group (1)),int(m.group (2)), int(m.

group (3)))

34 for y in dater:

35 m = re.match(r'^(\S+) -(\S+) -(\S+)', y)

36 fday = date(int(m.group (1)),int(m.group (2)),int(m.group

(3)))

37 nyears , remainder = divmod ((fday -bday).days , 365)

38 nmonths , ndays = divmod(remainder , 30)

39 age = "{}/{}/{}".format(nyears ,nmonths ,ndays)

40 #dictionary with the implemented data

41 dico= {'id': id1 , "participant_role": role ,"participant_age": age}

42 #add data to the DataFrame thank to a dictionary

43 participants = participants.append(dico , ignore_index=True)

44 #return the panda DataFrame

45 return participants

Listing 2: Participant Function

1 def occurrence(file_path):

2 tagger = treetaggerwrapper.TreeTagger(TAGLANG='fr')

3 #read the xml file

4 infile = open(file_path ,"r", encoding="utf8")

5 contents = infile.read()

6 soup = BeautifulSoup(contents ,'xml')

7 # branch in the file where you can find information on the sentence

8 u = soup.find_all('u')

9 # create the dictionaries and a panda DataFrames to stock data later

10 dico0 = {'sentence_id ':'', 'speaker ':'', 'sentence ':''}

11 dico1 = {'sentence_id ': '', 'speaker ':'', 'sentence ':'', 'word':'', '

June 2021 21/29



ipa -actual ':'', 'ipa -model':'',

12 'POS':'', 'lemma ':'', "morphology":""}

13 dic0 = pd.DataFrame(columns = dico0.keys())

14 dic1 = pd.DataFrame(columns = dico1.keys())

15 # retrieve the data

16 for i in u:

17 # don't consider utterance where the speaker is unknown

18 if i.get('speaker ') == None:

19 continue

20 # if we know the speaker we retrieve data

21 sp = i['speaker ']

22 id1 = i['id']

23 ort = i.find('orthography ')

24 sentence = list(itertools.chain (*(ort.find_all('w'))))

25 # ipa extraction

26 ipa = i.find(form = "actual")

27 ipa_a = list(itertools.chain (*(ipa.find_all('w'))))

28 ipa = i.find(form = "model")

29 ipa_m = list(itertools.chain (*(ipa.find_all('w'))))

30 # remove some character from sentence for more readability

31 chars = ['<', '>','0']

32 s = []

33 for j in sentence:

34 s.append(j.translate(str.maketrans ({ord(x): '' for x in chars})

))

35 # fill the first dictionary with data regarding the utterance

36 dic = {'sentence_id ':id1 , 'speaker ':sp , 'sentence ':' '.join(s)}

37 dic0 = dic0.append(dic , ignore_index=True)

38

39 tags = tagger.tag_text(s, tagonly = True)

40 # morphology retrieval

41 morpho = i.find(tierName = "Morphology")

42 if morpho != None:

43 mor_w = list(itertools.chain (*( morpho.find_all('w'))))

44 else:

45 mor_w = [None]

46 # align data to create second dictionary

47 for (i,j,k,x,y) in itertools.zip_longest(sentence ,ipa_a ,ipa_m ,tags ,

mor_w):

48 sentence0 = ' '.join(s)

49 # word in sentence

50 word = i

June 2021 22/29



51 if word != None:

52 word = i.translate(str.maketrans ({ord(x): '' for x in chars

}))

53 #POS and Lemma with TreeTagger

54 t = []

55 if x != None:

56 m = re.match(r'^(\S+)\t(\S+)\t(\S+)', x)

57 #word = m.group (1)

58 if word == 'xxx' or word== 'yyy' or m == None:

59 pos = None

60 lemma = None

61 t.append ((word ,pos ,lemma))

62 else:

63 pos = m.group (2)

64 lemma = m.group (3)

65 t.append ((word ,pos ,lemma))

66 for l in t:

67 pos = l[1]

68 lemma = l[2]

69 # implement the second dataFrame with data

70 dic = {'sentence_id ':id1 , 'speaker ':sp , 'sentence ':

sentence0 , 'word':word ,

71 'ipa -actual ':j, 'ipa -model':k, 'POS':pos , 'lemma

':lemma , 'morphology ':y}

72 dic1 = dic1.append(dic , ignore_index=True)

73 #return the 2 dataFrame

74 return(dic0 , dic1)

Listing 3: Utterance and Occurrence Function

1 def createdb(h,u,p,db):

2 #connect to the database

3 mydb = mysql.connector.connect(host=h,

4 user=u,

5 password=p)

6 mycursor = mydb.cursor ()

7 # to create the database named as the variable db

8 mycursor.execute("CREATE DATABASE %s"%db)

Listing 4: create a database with mysql

1 def createtable(h,u,p,db):

2 #connect to the database

3 mydb = mysql.connector.connect(host=h,

June 2021 23/29



4 user=u,

5 password=p,

6 database = db)

7 mycursor = mydb.cursor ()

8

9 # create the table 'collection '

10 mycursor.execute("CREATE TABLE collection (id INT AUTO_INCREMENT

PRIMARY KEY , name VARCHAR (255))")

11 # create the table 'file'

12 mycursor.execute("CREATE TABLE file (id INT AUTO_INCREMENT PRIMARY KEY ,

name VARCHAR (255) , content LONGBLOB , collection_id INT ,FOREIGN Key (

collection_id) REFERENCES collection(id))")

13 # create the table 'participant '

14 mycursor.execute("CREATE TABLE participant (id INT AUTO_INCREMENT

PRIMARY KEY , role VARCHAR (255), age VARCHAR (255) ,file_id INT ,FOREIGN

key (file_id) REFERENCES file(id) )")

15 # create the table 'utterance '

16 mycursor.execute("CREATE TABLE utterance (id INT AUTO_INCREMENT PRIMARY

KEY , content BLOB , speaker INT , sentence_id VARCHAR (225) , file_id INT ,

FOREIGN key (file_id) REFERENCES file(id),FOREIGN key (speaker)

REFERENCES participant(id) )")

17 # create the table 'occurrence '

18 mycursor.execute("CREATE TABLE occurrence (id INT AUTO_INCREMENT

PRIMARY KEY , word VARCHAR (255), ipa_model VARCHAR (255) , ipa_actual

VARCHAR (255), POS VARCHAR (255), lemma VARCHAR (255) , morphology VARCHAR

(255) ,participant_id INT , utterance_id INT , FOREIGN key (

participant_id) REFERENCES participant(id), FOREIGN key (utterance_id)

REFERENCES utterance(id))")

Listing 5: create the table in the database

1 def insertcollection(h,u,p,db):

2 mydb = mysql.connector.connect(host=h,

3 user=u,

4 password=p,

5 database = db)

6 mycursor = mydb.cursor ()

7

8 sql = "INSERT INTO collection (id , name) VALUES (%s,%s)"

9 val = [(0,'CHILDES -KernFrench '), (0,'CHILDES -Henkeler ') , (0,'CHILDES -

Lyon'), (0,'CHILDES -StanfordFrench '), (0,'COLAJE '), (0,'JEMS')]

10 mycursor.executemany(sql ,val)

11 mydb.commit ()

June 2021 24/29



12

13 print(mycursor.rowcount , "record inserted.")

Listing 6: Insert Collection Name Into The Table

1 def insertdata(collection , h, u, p, db):

2 # The parameter collection of the function refers to the keys of our

json dictionary

3 # The first part of the code retrieve the path to the file of the

collection and put them in a list

4 with open('new_file.json', 'r') as f:

5 f = json.load(f)

6 f_p = []

7 for i in f[collection ]:

8 for name , files in i.items():

9 f_p.append(files [2])

10 #list with path

11 f_path = list(itertools.chain (*f_p))

12

13 # This part connect to the sql database that we have created before

14 # h, u, p, db correspond to the value you have chossen to connect to

the database

15 mydb = mysql.connector.connect(host=h,

16 user=u,

17 password=p,

18 database=db

19 )

20 mycursor = mydb.cursor ()

21 # this part apply the 3 functions created before on a file and store

the result

22 for i in f_path:

23 f = file_(i)

24 p = participant(i)

25 o = occurrence(i)

26 u = o[0]

27 o0 = o[1]

28 # this part insert data into the table file

29 for j in range(len(f)) :

30 file_name = f.loc[j, "file_name"]

31 file_content = f.loc[j,"content"]

32 mycursor.execute("SELECT id FROM collection WHERE name ='COLAJE

'")

33 myresult = mycursor.fetchall ()

June 2021 25/29



34 for x in myresult:

35 k = x[0]

36 sql = 'INSERT INTO file (id, name , content , collection_id)

VALUES (%s, %s , %s , %s)'

37 fi= (0, file_name ,file_content , k)

38 mycursor.execute(sql ,fi)

39 mydb.commit ()

40 # store the primary key id of the file , it will be later

used into other table as a foreign key

41 fileid = mycursor.lastrowid

42

43 # insert the participant into the table and link them to the right

file

44 participantf = []

45 for k in range(len(p)):

46 p_id = p.loc[k,'id']

47 p_role = ''.join(p.loc[k, 'participant_role '])

48 p_age = p.loc[k,'participant_age ']

49 sql = 'INSERT INTO participant (id, role , age , file_id) VALUES

(%s, %s , %s , %s)'

50 pi= (0, p_role ,p_age , fileid)

51 mycursor.execute(sql ,pi)

52 mydb.commit ()

53 # store the primary key of the participant and the id of the

participant in the file

54 participantid = mycursor.lastrowid

55 participantf.append (( participantid ,p_id))

56

57 # insert utterance into database row by row

58 # the table utterance have the columns: id , content , speaker ,

sentence_id , file_id

59 # sentence_id correspond to the utterence id in the file it will be

usefull later to insert the occurrence

60 for l in range(len(u)):

61 utt_id = u.loc[l,'sentence_id ']

62 utt_speaker = u.loc[l,'speaker ']

63 utt_content = u.loc[l,'sentence ']

64 # find the participant id of the person speaking

65 for j in participantf:

66 if utt_speaker == j[1]:

67 speaker= j[0]

68 sql = "INSERT INTO utterance(id , content , speaker , sentence_id ,

June 2021 26/29



file_id) VALUES (%s, %s , %s , %s, %s)"

69 ui = (0, utt_content , speaker , utt_id , fileid)

70 mycursor.execute(sql ,ui)

71 mydb.commit ()

72

73 # insert data into occurrence row by row

74 # The table occurrence have the colums : id ,word ,POS ,Lemma ,

ipa_model , ipa_actual , morphology , participant_id , utterance_id

75 for m in range(len(o0)):

76 #utterance information to find the foreign key later

77 utt_id = o0.loc[m,'sentence_id ']

78 #occurence0 info to store into the database

79 word= o0.loc[m,'word']

80 pos= o0.loc[m,'POS']

81 lemma = o0.loc[m, 'lemma']

82 ipa_a = o0.loc[m, 'ipa -actual ']

83 if ipa_a != None:

84 ipa_a = str(ipa_a)

85 ipa_m = o0.loc[m, 'ipa -model ']

86 if ipa_m != None:

87 ipa_m = str(ipa_m)

88 morpho = o0.loc[m, 'morphology ']

89 if morpho != None:

90 morpho = str(morpho)

91 # find the utterance_id and participant_id of the occurence

92 mycursor.execute('set GLOBAL max_allowed_packet =67108864 ')

93 mycursor.execute("SELECT * from utterance where sentence_id = %

s and file_id = %s limit 1",(utt_id ,fileid))

94 myresult = mycursor.fetchall ()

95 for x in myresult:

96 utterence_id = x[0]

97 participant_id = x[2]

98

99 sql = "INSERT INTO occurrence (id ,word ,POS ,Lemma ,ipa_model ,

ipa_actual , morphology , participant_id , utterance_id) VALUES (%s, %s ,

%s , %s, %s,%s, %s, %s, %s)"

100 o0i = (0,word ,pos ,lemma ,ipa_m ,ipa_a ,morpho ,participant_id ,

utterence_id)

101 mycursor.execute(sql ,o0i)

102 mydb.commit ()

Listing 7: Insert Data Into The Database Under The CoLaJE Collection

June 2021 27/29



Bibliography

References

[1] Lex.e.m.

URL https://projetlexem.wixsite.com/website

[2] What is a relational database (rdbms)?

URL https://www.oracle.com/database/what-is-a-relational-database/

[3] Childes.

URL https://childes.talkbank.org/

[4] Ortolang.

URL https://www.ortolang.fr/market/corpora

[5] H. Henkeler, Aspects of the evolution of the early lexicon in the interactions mother-

child: Case study of two dizygotic twin children between 15 and 26 months. university

of rouen. (2005).

[6] B. Davis, S. Kern, A. Vilain, C. Lalevée, Des babils à babel: les premiers pas de la

parole., Revue Française de Linguistique Appliquée 13 (2) (2008) 81–91.

[7] K. Demuth, A. Tremblay, Prosodically-conditioned variability in children’s production

of french determiners., Journal of Child Language 35 (2008) 99–127.

[8] M. M. Vihman, C. A. Ferguson, M. Elbert, Phonological development from babbling

to speech: Common tendencies and individual differences., Applied Psycholinguistics

7 (1) (1986) 3–40. doi:https://doi.org/10.1017/S0142716400007165.

[9] Colaje.

URL http://colaje.scicog.fr/

[10] B. Gavin, What Is An XML File (And How Do I Open One)? (07 2018).

URL https://www.howtogeek.com/357092/what-is-an-xml-file-and-how-do-i-open-one/

[11] Beautiful soup documentation.

URL https://www.crummy.com/software/BeautifulSoup/bs4/doc/

[12] Treetagger- a part-of-speech tagger for many languages.

URL https://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/

June 2021 28/29

https://projetlexem.wixsite.com/website
https://projetlexem.wixsite.com/website
https://www.oracle.com/database/what-is-a-relational-database/
https://www.oracle.com/database/what-is-a-relational-database/
https://childes.talkbank.org/
https://childes.talkbank.org/
https://www.ortolang.fr/market/corpora
https://www.ortolang.fr/market/corpora
https://doi.org/https://doi.org/10.1017/S0142716400007165
http://colaje.scicog.fr/
http://colaje.scicog.fr/
https://www.howtogeek.com/357092/what-is-an-xml-file-and-how-do-i-open-one/
https://www.howtogeek.com/357092/what-is-an-xml-file-and-how-do-i-open-one/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
https://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/


[13] Treetagger python wrapper’s documentation.

URL https://treetaggerwrapper.readthedocs.io/en/latest/

[14] re — Regular expression operations — Python 3.9.5 documentation.

URL https://docs.python.org/3/library/re.html

[15] Introduction to SQL (Structure Query Language) — Studytonight (2021).

URL https://www.studytonight.com/dbms/introduction-to-sql.php

[16] Sql syntax.

URL https://www.w3schools.com/sql/sql_syntax.asp

[17] Pandas Basics - Learn Python - Free Interactive Python Tutorial.

URL https://www.learnpython.org/en/Pandas_Basics

June 2021 29/29

https://treetaggerwrapper.readthedocs.io/en/latest/
https://treetaggerwrapper.readthedocs.io/en/latest/
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html
https://www.studytonight.com/dbms/introduction-to-sql.php
https://www.studytonight.com/dbms/introduction-to-sql.php
https://www.w3schools.com/sql/sql_syntax.asp
https://www.w3schools.com/sql/sql_syntax.asp
https://www.learnpython.org/en/Pandas_Basics
https://www.learnpython.org/en/Pandas_Basics

	Abstract
	Introduction
	Presentation Of The Subject
	Relational Database
	Corpus
	Henkeler
	Kern-French
	Lyon
	Standford-French
	CoLaJE
	JEMS

	Data Extraction
	NLP Task
	SQL

	Work Done
	Pipeline
	Data In Corpus
	Extraction Of Data From XML
	First Function
	Second Function
	Third Function

	Issue Caused By NLP Tool
	1st Alternative
	2nd Alternative
	Alternative Chosen For The Database

	Schema Of Database
	Database With SQL
	Result

	Discussion
	Conclusion
	Annexes
	Bibliography

