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Chapter 1

Introduction

Automatic speech processing is a field of artificial intelligence covering several tasks

such as speech recognition, speech detection, language identification and speaker

identification. Among these, one of the first speech recognition systems was de-

signed by Bell Labs researchers in 1952 to identify isolated numbers spoken by a

single speaker [1]. The speech recognition systems of the 1950’s did not exceed

vocabulary size of more than ten words and speech recognition technologies evolved

little during this period. The first systems for processing continuous speech ap-

peared in the late 1960’s with work on a voice command system for playing chess

and the design of the Dynamic Time Warping (DTW) algorithm by researchers for

a system with a vocabulary of about 200 words. In the 1970’s, there was a major

revival of research in the field of speech recognition thanks to DARPA’s ‘Speech

Understanding Research’ system, which revealed the use of cepstral analysis and

Hidden Markov Model (HMM); which are still widely used in systems today. In

the 1980’s, team at IBM built the Tangora system based on HMMs and having a

vocabulary of twenty thousand words. The progress in speech recognition contin-

ued and the latest technological breakthrough happened in the early 2010 with the

success of Deep Neural Networks (DNN). But, it should be noted that all these

advances were only made possible thanks to the exponential progress made on the

computing capacity of computer resources used by researchers.

Most advanced ASR systems are trained on large amount of speech data and

associated text transcriptions. Thanks to efforts from the speech research commu-

nity significant amount of read speech datasets have been made available in several

languages. However, ASR models trained on read speech datasets are known to per-

form poor on spontaneous conversational speech. Moreover, collection and manual

transcription of spontaneous conversational speech is known to be highly expen-
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sive. With nearly 7,000 languages spoken all over the world [2], such approaches

for building ASR systems have managed to cover only a few tens of languages.

The speech research community has recently started putting efforts on develop-

ing methods to learn generic speech representations from unlabeled audio sources

using deep learning methods [3, 4]. These types of learning methods, recently

termed as self-supervised learning methods, have also proven their effectiveness in

other areas, for instance natural language processing [5] and computer vision [6, 7].

Drawing motivation from this research, this project will study self supervised learn-

ing for ASR. More specifically, it will focus on self supervised methods for learning

phoneme like units from unlabeled speech data.

The rest of this report is organized as follows. Chapter 2 presents concepts

related to feature extraction from speech signal, automatic speech recognition and

artificial neural networks. Chapter 3 begins with an introduction to self-supervised

learning and then describes details on blind phoneme segmentation. This is followed

by a brief description of state-of-the-art methods to learn speech representations in

a self-supervised manner. The report concludes with Chapter 4, which presents

points concerning the implementation of the methods studied under this project.
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Chapter 2

Background

This chapter briefly presents some concepts related to feature extraction from

speech, speech recognition and neural networks which would form the basis of meth-

ods being studied in this project.

2.1 Feature Extraction

In order to perform any form of automatic speech processing, the first step is to

extract relevant features from a raw speech signal. There are several different meth-

ods to do so and the choice of a speech feature extraction method is based on its

effectiveness and robustness on the target task. Mel Frequency Cepstral Coefficents

(MFCCs) [8] are a widely used features for ASR. Introduced in the 1980’s, and

for a long period considered as the state-of-the-art, it focused on representing the

information which human listeners would find important.

Figure 1 shows a block diagram for the steps involved in extracting MFCC

features from raw continuous speech signal. To obtain MFCCs, first the speech

signal is framed into short 20-40 ms frames, with an assumption that on short

time scales the signal doesn’t really change and remains statistically stationary.

Then the power spectrum of each frame is calculated using Fourier transform. The

human ear (cochlea) resolves frequencies non-linearly across the audio spectrum

and in order to obtain the same non-linearity, the power spectrum is transformed

using a Mel filterbank. Finally, a compression operation is performed by taking the

logarithm of the filterbank energies and by decorrelating them with the Discrete

Cosine Transform (DCT).
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Figure 1: Block diagram for extraction of MFCC features from speech signal.

2.2 Speech Recognition

The main objective for an ASR decoder is to decode the speech signal into an opti-

mal word sequence W ∗ among all possible word sequences. Denoting, the sequence

of MFCC features extracted from the raw speech signal as X = (x1, . . . , xT ), the

decoding objective is given as:

W ∗ = argmax
W

P (W |X) (1)

By using the Bayes Formula, it is in fact possible to formulate a new equation

from this previous one.

W ∗ = argmax
W

P (X|W )P (W ) (2)

This equation splits the ASR problem into two parts, namely the acoustic model

and the language model. P (W ) represents the likelihood of the sequence of words

spoken and are computed by a language model. The language model is learned

from a collection of text data.

The ASR acoustic model is responsible for mapping acoustic feature vectors to

linguistic units like phonemes and words. In other words, it computes the likelihood

of a feature vector X given a model of the linguistic unit W , i.e P (X|W ). An

acoustic model is typically a sequence model like the Hidden Markov Model (HMM).

HMMs are graphical models that are indeed efficient and flexible to model and

infer temporal pattern recognition from sequential data like those embedded in

speech recordings and handwriting images. They are composed of a Markov chain,

which is considered as the hidden part, in addition to an observable process that
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is probabilistically dependent on the Markov chain. Traditionally, each phoneme is

modeled by an HMM comprising of 3 to 5 states where each state is represented

by a Gaussian Mixture Model (GMM) which models the distribution of observed

speech feature vectors in the corresponding speech signal [9]. Modern approaches

for ASR, replace the GMM with a more powerful DNN model.

2.3 Neural Network

Neural networks are computational models that try to imitate the functioning of

human nervous system in order to solve complex mathematical problems. There are

several types of neural network that can be configured according to the tasks to be

solved. For instance, convolutional neural networks emulate receptive field of the

human eye excelling at image processing tasks, whereas recurrent neural networks

can readily handle sequential data like text, speech, protein sequences, etc.

2.3.1 Simple Feedforward Neural Network

Feedforward neural networks are called so because activations in this network flow

from the input nodes, then through the hidden nodes or hidden layer and finally

to the output nodes or output layer. As data passes through the artificial mesh of

the network, each layer processes one aspect of the data, filters out outliers, detects

familiar entities and produces the final output. Among feedforward neural networks,

Multilayer Perceptrons (MLP) were the initial and successful neural networks.

Figure 2 presents a pictorial representation of an MLP. The description of this

MLP is enumerated below.

• Input Layer (Layer 0): This layer represents the layer of neurons that

receive inputs and pass them on to other layers. The number of neurons

in this layer must be proportional to the number of attributes or features

representing the input data (X1, X2, ..., Xn).

• Hidden Layers(Layer 1, Layer 2): These layers are included between the

input layer and the output layer and they constitute the complexity of the

network. They are the hidden layers of the model. They contain a large

number of neurons which apply transformations to the inputs before passing

them on to the next layers and so on up to the output layer.
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Figure 2: A multilayer perceptron. (From: https://brilliant.org/wiki/

feedforward-neural-networks/)

• Output Layer (Layer 3): This layer transforms the output of the final

hidden layer into output activations.

• Wx = {wx1s1 , wx2s1 , ...} represent weights that transform incoming activations

(xi) to outgoing activations (sj). Similarly, Ws = {ws1s3 , ws2s3 , ...} represent

weights that transform incoming activations (si) to outgoing activations (sj)

and Wy = {ws3y1 , ws3y2 , ...} represent weights that transform incoming activa-

tions (si) to output activations (yj)

Such an MLP can be mathematically formulated as:

S = σ(Wx X) for Layer 1 (3)

S = σ(Ws S) for Layer 2 (4)

y = softmax(Wy S) for Layer 3 (5)
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2.3.2 Recurrent Neural Network

Recurrent Neural Network (RNN) are special type of neural networks designed to

handle sequential inputs [10]. Figure 3 presents a pictorial representation of an

RNN. RNNs can be mathematically formulated as:

ht = σh(Wh ht−1 +Wx xt) (6)

yt = σy(ht Wy) (7)

where, xt represents the input sample at time step t, ht represents the corresponding

hidden layer representation of the RNN, and yt is the corresponding output. σ

represents a non-linearity function, which could be different at the hidden and the

output layers.

Figure 3: Recurrent neural network with inputs, hidden states and outputs unrolled

over time.
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Chapter 3

Self-supervised Learning

Advances in machine learning, particularly in deep learning and neural networks, in

the last decade have led to the best performing systems in computer vision, natural

language processing, robotics, audio signal processing and many other fields and ap-

plications. However, it is very well known that the success of these learning methods

came out very large quantities of human labeled or annotated datasets. Hence the

term ‘Supervised Learning’, as the training of the models relies on explicit labels or

supervision. At the same time the research community has repeatedly recognized

the importance of ‘Unsupervised Learning’ and ‘Semi-supervised Learning’ meth-

ods. While the former learns distributions and/or representations from completely

unlabeled datasets, the later tries to achieve representations and models effective on

a given task using a combination of (lesser) labeled and (more) unlabeled datasets.

Self-supervised learning1 is another approach evolving out of the deep learning

paradigm. It builds on the ideas that (a) deep learning models can learn powerful

representations at intermediate layers of the model, and (b) learning can be more

effective with explicit supervision, even if the supervision signal is not a task specific

label. More interestingly, the supervision signal can come from a data sample itself

or from a known transformation of the data sample. For instance,

• in some methods, a part of the input data sample is masked and this masked

part is to be predicted as output by using the remaining part as input. An

example being prediction of masked words in a sentence [5].

• in other methods, an input sample undergoes one of the possible known trans-

formations and the type of transformation is predicted from original and trans-

formed data samples. An example being predicting rotation of images [7].

1alternatively also referred as ‘Unsupervised Representation Learning’
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Similar to the above mentioned examples for text and image processing, self-

supervised learning has been tried in context of speech processing [3, 11, 12, 4, 13].

These include learning effective representations for speech recognition task [3, 11, 12]

as well as for other tasks like speaker verification [4] and speech emotion recognition

[13]. Based on the approach adopted for self-supervision the learning methods

proposed in these prior work can be categorized as follows.

• Encoding speech into latent representations, followed by prediction of a future

latent representation [11, 4, 13], similar to a predictive language model [14].

• Encoding speech into latent representations, followed by masking and pre-

diction of masked representations [3]. This is similar to the text processing

example mentioned above [5].

• Encoding speech into latent representations, followed by regression of features

obtained using traditional speech processing methods [12]. This is similar to

the image processing example mentioned above [7].

In this project, we are interested in the speech recognition task and more par-

ticularly on automatic phoneme segmentation using techniques and representations

from self supervised learning approaches. Within this scope, we would like to briefly

describe a prominent prior work on blind phoneme segmentation and two effective

speech representations learned out of self-supervision. We would like to highlight

that blind phoneme segmentation is itself a self-supervised approach.

3.1 Blind Phoneme Segmentation

The objective of blind or automatic phoneme segmentation is to accurately mark

boundaries of phonemes appearing in a speech signal in an unsupervised manner.

Unsupervised segmentation of speech signal into phoneme like linguistic units has

been studied in different prior work [15, 16, 17, 18, 19]. The central idea of these

methods can be generalized into the following steps:

1 Extract frame level spectral feature vectors from the raw speech signal. For

example, MFCCs presented in Section 2.1.

2 Slide over the sequence of features and accumulate them into bigger windows

or an accumulated representation.
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3 Compare adjacent accumulated windows or representations to obtain simi-

larity or distance graphs over time. Peaks or valleys in this graph represent

spectral change points in the speech signal.

4 Select and refine the change points to obtain boundaries corresponding to

phoneme like linguistic units.

These methods differ in the type of spectral features used, the accumulation of

feature vectors, adjacent representation comparison method and also the bound-

ary refinement techniques. For example, [15] uses feature averaging and euclidean

distances, [16] uses margin methods, [17] computes Bayesian Information Crite-

rion (BIC) on windows of features, [18] monitors spectral changes using Legendre

polynomial approximation and [19] applies RNN directly over MFCCs.

Among all the methods listed above, we choose to adopt the blind phoneme

segmentation method using RNNs [19] due to its simplicity and effectiveness. This

work used two types of features. The first type of speech feature vector consists 13

dimensional MFCCs and the second one consists of one hot categorical features of

8 dimension, computed by performing a K-means clustering [20] on 10000 MFCCS

frame randomly selected from the training set. Figure 4 presents a visualization of

the phoneme segmentation

Figure 4: Visualization of phoneme segmentation on MFCC feature sequence (in

middle) and categorical features sequence (at bottom) obtained after K-means clus-

tering on MFCCs. (Figure taken from [19].)
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With the two type of features, they proposed three types of models. Two of

these models used the categorical feature vector of 8 dimension. The first model

being a K-order Markov chain prediction model approximated as:

pK(xt | xt−10 ) =
1

K

K∑
i=1

p1(xt | xt−i) (1)

with the first order Markov model transition probabilities computed as:

p1(xt | xt−i) =
f(xt−i, xt)

f(xt−i)
(2)

where, f() could be as simple as a count function on categorical features. Given

this approximated Markov chain model the prediction graphs, as discussed in the

step 3 above, can be obtained as:

Emarkov(t) = − log pK(xt | xt−10 ) (3)

= − log
K∑
i=1

p1(xt | xt−i) (4)

The second model based on categorical feature vectors makes use of an RNN

model which is expected to perform better than an approximated Markov. The

RNN model can be trained to predict the categorical one hot feature x̂t given

history captured in the hidden state ht of the RNN, as represented by equation (7)

in section 2.3.2. The training procedure would optimize the standard cross entropy

loss function. During test, the prediction graphs can be obtained as:

ERNN-cat(t) = −
d∑

i=1

1xt=i log p(x̂t | ht−1) (5)

The third model is based on MFCC feature vectors and makes use of RNN

model to perform a regression of MFCC feature vectors. During training the RNN

model would be optimized to minimize the root mean square error between the

actual MFCC feature vector xt and the predicted MFCC feature vector x̂t. The

same function can be used to get the prediction graphs during test as:

ERNN-MFCC(t) =
||xt − x̂t||2

d
(6)

where d is the number of MFCCs in a feature vector.
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3.2 wav2vec Representations

The wav2vec 2.0 model is one of the most recent work on obtaining effective speech

representations using self-supervised learning [11]. The high performance of these

representations on speech recognition task motivates us to experiment with them in

our task. While the model training and architecture themselves are quite compli-

cated, we try to present a brief description of the self-supervised learning approach

adopted in this work.

Figure 5 presents a high level block diagram of this approach. As shown in this

figure, raw audio waveform is first transformed by a feature encoder into latent rep-

resentations (Z). The feature encoder is a stack of Convolutional Neural Networks

(CNN). The latent representations are then presented to two blocks, each having

its own training loss function. The transformer block uses the recently proposed

transformer neural network architecture and functions similar to the BERT masked

language model [5], wherein a part of the sequence is masked and then predicted

using the unmasked parts of the sequence. The quantization block performs dis-

cretization of the latent representations (Z) which are actually predicted at the

output of the transformer block. Training objective comprises optimization over

loss functions of the transformer block as well as the quantization block.

Figure 5: Block diagram of wav2vec 2.0 model.
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3.3 Representations from Predictive Coding

Based on cognitive science studies, it is known that humans learn new categories of

sounds and images by observing and then making predictive observations. A human

listener that hears the first part of a sound can more or less intuitively predict the

future sequences depending on the context. This is exactly the same motivation

behind Predictive Coding (PC) models [21].

Two types of PC models have been proposed under self-supervised learning for

speech representations. One is referred as Autoregressive Predictive Coding (APC)

model and the other as Contrastive Predictive Coding (CPC) model [22, 4]. The

effective performance of representations obtained from these models, on speaker

verification and phoneme recognition tasks, motivates us to experiment with them.

Again, since the model training and architecture themselves are quite complicated,

we present a brief description of the self-supervised learning approach adopted in

these models.

An APC model is similar to an RNN based language model for text. Given

the context of a sequence of words in the history, represented by the hidden state

(ht−1) of the RNN, the RNN language model tries to predict the word at the next

time step (x̂t). However, representations extracted from a speech signal are highly

continuous in nature and hence can be easily predicted by an RNN model. To

complicate the prediction task, and to result into more effective representations,

APC models try to predict a representation which is n time steps ahead (x̂t+n).

In contrast to this training objective of the APC model, a CPC model aims to

distinctly identify the target representation at time step n from randomly sampled

imposter representations, using a noise contrastive loss function.
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Chapter 4

Methodology and Action Plan

4.1 Planned Study

The main objective of this project is to achieve a more efficient blind phoneme

segmentation model. In doing so we will adopt the blind phoneme segmentation

method discussed in section 3.1. In particular we will adopt the RNN-MFCC

model represented by equation (6) in section 3.1. As compared to the original

work, which uses MFCC feature vectors as representations for the speech signal,

we would like to study the performance with effective representations learned from

self-supervised learning methods. We will experiment with representations obtained

from the wav2vec model discussed in section 3.2 and autoregressive predictive cod-

ing models and contrastive predictive coding models discussed in section 3.3. These

representations will be extracted from the pre-trained wav2vec1 and predictive cod-

ing2 models made available by the authors of the respective models.

4.2 Evaluation

The metrics for evaluation of blind phoneme segmentation from [19] will be used in

our study. This includes:

• Recall: the fraction of actual boundaries in the reference transcription that

are correctly identified by a method.

• Precision: the fraction of total boundaries identified by a method that are

correct.

1https://github.com/pytorch/fairseq/tree/master/examples/wav2vec
2https://github.com/iamyuanchung/Autoregressive-Predictive-Coding
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• F1-score: the harmonic mean of Recall and Precision. Computed as:

F1 =
2× Precision× Recall

Precision + Recall
(1)

• R-val: a metric designed to handle over-segmentation. Computed as:

R = 1−

√
(1− Recall)2 +OS2 + |Recall−OS−1|√

2

2
(2)

where over-segmentation parameter OS = Recall/Precision− 1

4.3 Corpus and Tools

Experiments will be carried out on the publicly available Librispeech [23] corpus

which contains English read speech. Since some of the pre-trained models used

in our work are already trained on Librispeech dataset, special care will be taken

so that part of Librispeech already seen during representation learning does not

overlap with the train, validation or test sets used in our study.

ScikitLearn3 Python library [24] will be used for clustering and dimensionality

reduction tasks. PyTorch4 Python library [25] will be used for training recurrent

neural network for the blind phoneme segmentation task.

4.4 Timeline

The project is planned to progress through the following stages.

• Month 1 (Jan 2021)

– Introduction to tools and corpora discussed in sections 4.3 and 4.3.

• Month 2-3 (Feb - Mar 2021)

– Implementation of blind phoneme segmentation on MFCC features.

• Month 4-5 (Apr - May 2021)

– Exploration of representations from pre-trained wav2vec and predictive

coding models.

– Compilation of results, final report and defense preparations.

3https://scikit-learn.org/stable/index.html
4https://pytorch.org
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