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Abstract

Our project aims at improving speaker diarization with overlapped speech. This report describes
the second part of our project, the experimentation phase, whereas the first phase was focused on
the comprehension of the subject and the bibliographical research. We first discuss the speaker
diarization in general, and speaker diarization with overlapped speech in particular. We also an-
alyze the acoustic characteristics of overlapped speech and the impact of overlapped speech on
speaker diarization. Then, we investigate this impact both in terms of performance and influence
on acoustic features. Finally, several models based on x-vector analysis are explored for identifica-
tion of overlapped speech. We state the problem through classification and regression, and we find
out that in the case of our imbalanced data, classification methods work better and can be further
improved to have better results.
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Chapter 1

Introduction

The aim of this report is to experiment with overlapping speech, a recurrent issue in speaker di-
arization, by exploring the consequences on performance, on acoustic features, and by evaluating
overlap detector methods with x-vectors (Snyder et al., 2018).

This first chapter recalls the definitions of speech signal and speaker diarization (SD). Then
the components, applications, and issues of SD are exposed. Finally, the contribution, scope, and
organization of this report are presented.

1.1 Speech signal and speech technology

The sound is a sequence of vibrations (Diliberto, Pereira & Nikiforovskaja, 2021). Sound coming
from our phonatory system constitutes the speech. The speech signal is stored as a sequence of
samples, encoded in different formats. The number of samples per second is known as the sampling
rate.

Speech technology involves the processing of speech signal by a machine (Rudnicky, Haupt-
mann & Lee, 1994). Speech sounds are analyzed by computing short-term characteristics which
represent acoustic and prosodic information. These components are then compared to stored pat-
terns to recognize spoken words, speakers, emotions, and language.

1.2 What is speaker diarization?

Speaker diarization designates the task of finding who spoke when in an audio recording containing
several speakers’ voices. This is the unsupervised identification of each speaker within an audio
stream and the durations during which each speaker is speaking (Anguera et al., 2012).

Speaker diarization is a relatively new field and thus is still in need of research and improve-
ment. Some competitions such as DIHARD (Ryant et al., 2019b) and the Rich Transcription Evalu-
ation by the American National Institute of Standards and Technologies (Sadjadi et al., 2017) are
organized to promote research in this field.
[Paragraph taken from our previous report (Diliberto, Pereira & Nikiforovskaja, 2021)]

1.3 Components of speaker diarization system

As a reminder, the components of a typical speaker diarization system are shown in Fig. 1.1. The
main steps are: preprocessing, segmentation, embedding extraction, cluster initialization, splitting
or merging tools & cluster distance calculation, and stopping criterion. Each step is explained in
more details in our previous report (Diliberto, Pereira & Nikiforovskaja, 2021).
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Figure 1.1: Components of a typical speaker diarization system.
[Figure taken from our previous report (Diliberto, Pereira & Nikiforovskaja, 2021)]

The uniform segmentation for state-of-the-art speaker diarization systems is followed by speaker
embedding extractions. Commonly, x-vector embeddings are extracted and they are used with a
clustering technique called agglomerative hierarchical clustering. In addition, re-segmentation is
often applied for frame-level refinements of results.

1.4 Applications of speaker diarization technology

Speaker diarization is a useful tool and has many applications, such as (Tranter & Reynolds, 2006):

• enabling automatic speaker-attributed speech-to-text transcription for interviews, meetings,
conferences or courtroom audiences;

• ameliorating the task of searching and indexing audio archives;

• improving accuracy and reducing computational cost of automatic speech recognition, when
used as a preprocessing step;

• speaker spotting in voice assistant technology.

[Paragraph taken from our previous report (Diliberto, Pereira & Nikiforovskaja, 2021)]

1.5 Issues and Challenges

The state-of-art speaker diarization systems show reasonably good results in controlled conditions.
However, the performance is degraded in realistic conditions due to the following reasons:

• overlapping speech;

• background noise;

• distance variations between speakers and microphones.

[Paragraph taken from our previous report (Diliberto, Pereira & Nikiforovskaja, 2021)]

7 7



1.6. Scope of the project Chapter 1. Introduction

1.6 Scope of the project

This project aims at studying SD with the particular issue of overlapped speech. We provide perfor-
mance analyses to determine the effects of speech overlaps, and acoustic analyses to understand
audio features and find discriminating ones. We also develop methods to detect overlapping speech
through classification and regression.

1.7 Contributions

The experiments in the following chapters of this report are contributions to the scientific commu-
nity, as they shed a new light on the old problematic of speech overlap.

The performance experiment deals with the impact of overlap on performance based on the
DIHARD II dataset. After removing audio segments containing overlap, the baseline is run and
its performances are calculated. This experiment shows the impact of overlap on non-overlapping
segments on SD performance.

We investigate the impact of overlap on acoustic features that can weaken diarization results.
90 different acoustic features are computed on the DIHARD II development dataset files, which
we divided between overlap and non-overlap segments. The study confirms that some features are
useful to discriminate overlap from non overlap speech.

The performance of overlap detection methods based on x-vectors is studied. We build a system
for training and testing them and implement both classical machine learning and deep learning-
based methods. We apply both these methods to the classification and the regression interpretation
of the problem. We show that classification interpretation of the problem works better, and x-
vectors can display some information for overlap detection.

1.8 Organization of the project

The second chapter, Chapter 2, focuses on the method, aiming at describing the dataset, the met-
rics, the system, and the tools used for our study. Then, the performance analysis, consisting in
the removal of overlapping segments, is described in Chapter 3. The acoustic impact experiments
follow, aiming at identifying acoustic features, in Chapter 4. Chapter 5 deals with the development
of overlap detectors based on x-vectors. Lastly, a conclusion is given in Chapter 6 with a summary
and limitations of this report, as well as future work suggestions.
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Chapter 2

Experimental setup

[Part of this chapter has been taken from our previous report (Diliberto, Pereira & Nikiforovskaja,
2021)]

2.1 Dataset description

2.1.1 Source of the dataset

The dataset used for our experimentations is the Second DIHARD Diarization Challenge dataset
(Ryant et al., 2019a; Sahidullah et al., 2019). The DIHARD Speech Diarization Challenge is a
series of yearly challenges on speaker diarization. To be more precise, the task is to automatically
determine who spoke when in a multi-speaker environment and using only audio recordings.

2.1.2 Types of track conditions

The tracks used as input can be single channels or multi-channels. More information on how these
channel types are recorded can be found in our previous report (Diliberto, Pereira & Nikiforovskaja,
2021).

Two different speech activity detection (SAD) are included in the dataset: reference SAD and
system SAD. The reference SAD condition means that a speech segmentation is supplied, whereas
system SAD stands for unprocessed audio.

These four conditions result in four different evaluation tracks: single channel using reference
SAD; single-channel using system SAD; multichannel using reference SAD; multichannel using
system SAD.

2.1.3 Origins of the tracks

Both the training and evaluation data for single-channel tracks are taken from eleven different
domains such as audiobooks, broadcast interviews, child language, clinical, courtroom, map task,
meeting, restaurant, socio-linguistic field and lab, and web videos. The combination of the tracks
belonging to each domain is approximately two hours long.

The multichannel data comes from the CHiME-5 dinner party corpus. This corpus is composed
of real conversational speech, recorded in the homes of the participants during dinner parties.
Twenty parties were organized, each lasting 2 to 3 hours and to which attended 2 hosts and 2
guests. The recordings were performed by Microsoft Kinect devices (producing 4 channel linear
arrays). The locations were divided into three areas, and each had two of these devices, which
produces 24 channels in total.

9
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Every segment containing personal identifying information was removed before the publishing
of the dataset. The files are 16 bit FLAC type for single-channel and WAV type for multichannel,
sampled at 16 kHz. Concerning the reference SAD files for the development set, they are given as
rich transcription time marked files.

2.2 Evaluation metrics

The results of the diarization are compared to those of a human segmentation, which is called
ground truth. When the results are different from the ground truth, an error is identified. Three
kinds of error can occur: speaker error, false alarm, and missed speech.

Speaker error (ERROR) refers to the assignment of a segment to the wrong speaker. A false
alarm (FA) occurs when a segment has been assigned to a speaker but actually contains no speech.
Missed speech (MISS) is the term for a segment of speech that has not been assigned to any
speaker.

Two kinds of error rates are usually computed to consider the results of a diarization task.
Diarization error rate (DER) is the most famous one and is used to determine the proportion of
reference speaker time that is not correctly attributed to a speaker. It is obtained by adding the
segments having one of the three kinds of errors (false alarm, missed speech, and speaker error)
and dividing their result by the total speaker time.

DER =
FA + MISS + ERROR

TOTAL

Jaccard error rate (JER) is based on the Jaccard index, which aims at computing the optimal
mapping between a reference and a system speaker pair. For each reference speaker, a specific JER
can be drawn by dividing the sum of false alarms and missed speeches by the union of reference
and system speaker segments. The JER is simply the average of every specific JERs.

JERref =
FA + MISS

TOTAL
JER =

1

N

∑
ref

JERref

2.3 Description of the speaker diarization system

2.3.1 State-of-the-art systems

The current state-of-the-art for speaker diarization systems is turning away from previously used
i-vectors to obtain speaker characteristics for the embedding extraction step (Snyder et al., 2017).
This new kind of system is focusing on the use of deep neural network embeddings to distin-
guish speaker differences, by mapping variable-length utterances to fixed-dimensional embeddings
called x-vectors; however, the challenge is to gather enough training data.

2.3.2 Baseline system

The system we use is the baseline system supplied by the Second DIHARD Diarization Challenge
(Ryant et al., 2019b). Four different tasks are performed, that is to say speech enhancement,
beamforming, speech activity detection, and diarization.

Firstly, a model is trained to forecast the ideal ratio masks from log-power spectra features
using a densely connected long short-term memory architecture, which is a model of Deep Neural
Network particularly useful to make predictions.

10 10
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Then, weighted delay-and-sum beamforming — a mathematical technique to identify the dis-
tance and orientation of sound waves caught by a microphone — is carried out.

After that, speech activity detection for tracks 2 and 4 is completed thanks to WebRTC’s SAD,
as found in the Py-webrtc Python package (see 2.1.2).

Finally, the diarization is achieved by isolating each recording into small overlapping segments,
extracting x-vectors, scoring using probabilistic linear discriminant analysis, and clustering with
agglomerative hierarchical clustering (see 1.3).

2.4 Libraries and tools

This section presents the libraries and tools used in the development of this project.

We use AudioSegment from the Pydub library (Robert, Webbie, et al., 2018) to arrange the files
for the acoustic analysis.

Audiofile library (Wierstorf, 2019) enables us to read audio files in Python.

The features we analyze are computed with the libraries Parselmouth (Jadoul, Thompson & de
Boer, 2018) and Opensmile (Eyben, Wöllmer & Schuller, 2010).

The plots are built using the library Matplotlib (Hunter, 2007) with data in Pandas (McKinney,
2010) format.

Basic statistics are calculated by the Numpy library (Harris et al., 2020).

Sklearn is used to work with data for machine learning, to implement classical machine learning
methods, and to train them to predict speech overlap (Pedregosa et al., 2011).

Finally, PyTorch enables us to implement and train deep learning methods (Paszke et al., 2019).

11 11



Chapter 3

Performance impact

Different experiments are performed to understand how overlapped speech impacts the results of
diarization. This chapter focuses on the overlapped speech removal experiment. More precisely,
the segments containing overlap are removed to measure the performance of the baseline on the
"cleaned" dataset. This is done using the development dataset from DIHARD II, presented in 2.1
(Ryant et al., 2019b).

3.1 Finding and removing overlapped speech segments

The first step of the experiment was to identify the segments containing overlapped speech. There
is a .rttm file for each audio track, which contains the precise time of beginning and the length
of speech for each of the speakers. These .rttm files are provided as a part of the corpus, because
the first track condition is a reference SAD (see 2.1.2). By comparing these files, the overlapping
segments can be computed.

Then, the objective was to discard the segments containing overlap. The .uem files, containing
the beginning and end of each audio track, were modified to keep only segments without any
overlapping speech.
After that, .rttm and .sad files, which are files containing beginning and end of speech segments
for each speaker, were adapted according to the new .uem files. If a .rttm segment did not belong
to the new .uem segments, even partially, it was removed. The same logic was applied to .sad files.

The new .uem segments were used to cut the .flac files and remove any speech overlap.

Using these newly created .rttm, .uem, .sad and .flac files, we were finally able to run the
baseline.

3.2 Results on the new data

The results we obtained thanks to the baseline were quite surprising, as the median DER did
not decrease in most cases. The dataset contains 12 audio categories, as said in 2.1.3 which are
"audiobooks", "broadcast interview", "child", "clinical", "court", "maptask", "meeting", "restaurant",
"socio field", "socio lab" and "webvideo".

Among these categories, only two have an unchanged or reduced error rate. The first one,
"audiobooks", contains no overlap so it is logical that the DER did not change after removing
overlap segments. The second one, "webvideo", has a slightly better error rate when compared to
the category results with overlap segments.

The performances in terms of overall DER by category, on original data and data with overlap
removed, as well as the average percentage of overlap are presented in the following Table 3.1.

12



3.3. Understanding the results Chapter 3. Performance impact

Category DER on original data DER on overlap removed Percent of overlap
Audiobooks 4 1.3 0

Broadcast interview 9 14.1 0.9
Child 31.7 37.5 7.5

Clinical 18.5 40.5 2.4
Court 16.3 29.3 1.6

Maptask 6.7 28.2 2
Meeting 34.1 49 21.3

Restaurant 50.5 59 21.4
Socio field 14.7 35.4 5.7
Socio lab 10.4 29.7 3.7
Webvideo 38.1 35.3 17.7

Table 3.1: Average DER score by category on original data and dataset with overlap removed
(DIHARD II development dataset) and average percentage of overlap by category. DER worsening

does not seem to depend on the percentage of overlap.

Figure 3.1: Median DER for each audio category. Most DER did not improve after having
removed overlapped segments.

This table shows no correlation between the average percentage of overlap and the evolution
of average DER for a category. For example, the category "maptask" with 2% of average overlap
obtained an average of 28.2 DER after removing overlap, whereas it scored only an average of
6.7 DER with the original data. Another example, with a high percentage of overlap such as the
category "meeting" which has more than 20% of overlap, the average DER worsened by 15 points.

To visualize how each average error rate evolves, Fig. 3.1 shows the median of each category
before and after removing overlap.

3.3 Understanding the results

With such surprising results, the codes and process were reviewed to look for any mistake.

We made a graph to find any correlation between the length of a segment and its performance
(see Fig. 3.2). For each file, we computed the length of the audio segments that have been removed
and compared it to the difference of DER from original data to non-overlap. There seems to be no
real correlation in the graph, so a shorter audio cannot explain why the new performance measures
are so low.

13 13
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Figure 3.2: Mapping of the DER improvement and the length difference for each file (from the
unchanged dataset to the segments without overlap). It is not possible to identify a clear

correlation between the amount of speech removed and the worsening of the performance.

Figure 3.3: Mapping of the average DER difference and the average percentage of overlap by
category. We cannot observe a clear correlation between the percentage of overlap and the DER

worsening.

14 14



3.4. Summary Chapter 3. Performance impact

In addition to this, we created Fig. 3.3 to compare the average percentage of overlap on the
original data to the average DER difference between original data and data without overlap for
each category. First, we computed the average DER per category, then we subtracted the scores
from non-overlap DER to the scores from original DER. Finally, this difference is compared to the
average percentage of overlap. Once more, we do not observe a clear correlation which could
explain the DER worsening.

3.4 Summary

This performance experiment resulted differently from what we expected, as we thought removing
overlap regions should reduce diarization errors. Different studies have been made to understand
why the performance was so low, but no correlation was found to explain it.

The cause for poor diarization results can be a combination of different elements, such as the
length of audio removed and the percentage of overlap, or it can be a more complex one.

As said in our previous report, "when an amount of overlap is big, it makes it harder for the
model even to perform diarization on the non-overlap regions, even though those regions are
usually easier for the model", which means the overlap has an influence on the whole dataset
(Diliberto, Pereira & Nikiforovskaja, 2021).

In addition to this, it needs to be recalled that overlap regions have been removed but noises,
such as background noise, are still present and can make the task more difficult.

From these results, we can infer that removing overlap regions and retraining the model on the
dataset without overlap is not a viable approach.

This experiment differs from the results shown in the tables from our last report, as these results
were obtained without running the baseline again; in other words, without retraining the model
on the newly obtained data without overlapping segments (Diliberto, Pereira & Nikiforovskaja,
2021).

To further explain the results from this chapter, the acoustic features are explored in the next
part. We identify features impacted by overlap and having a direct link with diarization errors.
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Chapter 4

Acoustic impact

Acoustic features can be impacted by overlapping segments and reduce the performance of diariza-
tion (Diliberto, Pereira & Nikiforovskaja, 2021).

Thus we have decided to identify which acoustic features are impacted by overlapping speech.
It will help to understand why it is so difficult to apply a speech diarization method on overlap
speech samples. Experiments are run on the DIHARD II development dataset to compare many
features computed on the overlap and non-overlap samples.

In this section, features will be called discriminative when they are impacted by overlap.

4.1 Splitting audio files

The first step was to split the audio files. We needed to have separated files with or without
overlapping speech. Using .rttm files, we found the overlap or non-overlap segments in single
audio channels by calculating the periods in which more than one speaker was active. Then, we
joined all non-overlapped segments together and exported them using AudioSegment from the
Pydub library, and we did the same thing for overlapped segments. From one audio, we obtained
three files: the complete audio, with both overlap and non-overlap segments, the non-overlapping
audio, and the overlapping one.

With these files, we could then compute a few acoustic features and compare the results be-
tween the overlap or non-overlap versions of the same file. This would allow us to understand
if, with the same parameters (speakers, environment, etc.), there is a difference between the seg-
ments when only one speaker is talking, and the ones when at least two speakers are talking at the
same time.

At first, we used every single channel audio file from the development part of the dataset to
get a large amount of data (192 audio files in total). However, we observed that the "audiobook"
files were composed of only one speaker and that we wouldn’t find any overlap segment in this
category. We decided to remove these files because it was not possible to compare the overlap and
non-overlap versions of the same audio.

4.2 Calculated features

We used two different libraries to compute the features. With Parselmouth library we computed
the pitch, which was identified in our previous report as being one of the main features impacted
by overlapping speech (Diliberto, Pereira & Nikiforovskaja, 2021). OpenSmile library enabled us to
compute 89 different features on our audio files (see the list of features in Fig. 4.1).
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4.2. Calculated features Chapter 4. Acoustic impact

Category Detailed feature

F0 semitone from 27.5Hz

amean
stddev Norm
percentile 20.0
percentile 50.0
percentile 80.0
pctl range 0-2
mean Rising Slope
stddev Rising Slope
mean Falling Slope
stddev Falling Slope

Loudness

amean
stddev Norm
percentile 20.0
percentile 50.0
percentile 80.0
pctl range 0-2
mean Rising Slope
stddev Rising Slope
mean Falling Slope
stddev Falling Slope
peaks per sec

Spectral Flux

amean
stddev Norm
V amean
V stddev Norm
UV amean

MFCC

MFCC1 amean
MFCC1 stddev Norm
MFCC2 amean
MFCC2 stddev Norm
MFCC3 amean
MFCC3 stddev Norm
MFCC4 amean
MFCC4 stddev Norm
MFCC1V amean
MFCC1V stddev Norm
MFCC2V amean
MFCC2V stddev Norm
MFCC3V amean
MFCC3V stddev Norm
MFCC4V amean
MFCC4V stddev Norm

Jitter Local
amean
stddev Norm

Shimmer Local
amean
stddev Norm

HNRdBACF
amean
stddev Norm

logRel-F0-H1

H2 amean
H2 stddev Norm
A3 amean
A3 stddev Norm

17 17
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F1

Frequency amean
Frequency stddev Norm
Bandwidth amean
Bandwidth stddev Norm
Amplitude logRelF0 amean
Amplitude logRelF0 stddev Norm

F2

Frequency amean
Frequency stddev Norm
Bandwidth amean
Bandwidth stddev Norm
Amplitude logRelF0 amean
Amplitude logRelF0 stddev Norm

F3

Frequency amean
Frequency stddev Norm
Bandwidth amean
Bandwidth stddev Norm
Amplitude logRelF0 amean
Amplitude logRelF0 stddev Norm

Alpha Ratio
V amean
V stddev Norm
UV amean

Hammarberg Index
V amean
V stddev Norm
UV amean

Slope

V0-500 amean
V0-500 stddev Norm
V500-1500 amean
V500-1500 stddev Norm
UV0-500 amean
UV500-1500 amean

Voicing

Voiced segments per sec
mean voiced segment length per sec
stddev voiced segment length per sec
mean unvoiced segment length per sec
stddev unvoiced segment lenght per sec

Equivalent sound level
Pitch

Table 4.1: Acoustic features computed.

4.3 Visual results

These 90 features were computed on each audio (complete, overlap, and non-overlap) of each
category, and visualized with histograms to get a first opinion on what are the most discriminative
features. For this analysis, we also removed the "broadcast interview" audio files, because the mean
of overlapped percentage in this category is 0.86%.

As can be seen in Fig. 4.1, the values of pitch look very different when dealing with overlapped
speech and with non-overlapped. Pitch results from the tension of the vibration of the vocal folds
and is closely related to the fundamental frequency F0 (Aung & Puts, 2020). For each file, the pitch
value of overlapped segments is at least 100 Hz higher than the one for non-overlapped segments.
We can assume this disparity is one of the reasons why it is so difficult to apply diarization on
overlapped speech.
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As for the pitch, we can see in Fig. 4.2 a large variation in loudness peaks per second for
overlapped and non-overlapped. When multiple speakers are talking at the same time, it seems
there are more loudness peaks in the speech.

Similarly, Fig. 4.3 represents the comparison between the voiced segments per second in over-
lapped and non-overlapped speech samples. The number of voiced segments looks higher for each
overlapped audio file than the number for the corresponding non-overlapped file.

Figure 4.1: Pitch values for overlapped and non-overlapped speech samples in the category
"restaurant".

4.4 Statistical results

For the statistical analysis of features, we decided to keep only the files with a percentage of
overlap higher than 20% to be sure our results were consistent. According to this condition, the
analysis was performed on 26 files from the following categories: 3 from "child", 6 from "meeting",
7 from "restaurant", 10 from "webvideo". Table 4.2 shows the statistical values of some features
we selected using these 26 files.

In our table, the ratio corresponds to the quotient of the non-overlap mean (or median) over the
overlap mean (or median). When this ratio is higher than 1, it means that the values increase when
there is overlap, in comparison to non-overlap. The higher the ratio is, the more discriminative
the feature is (i.e. values differ a lot from "normal values" when there is overlapping speech).
Oppositely, if it is lower than 1, it means that the values decrease, and the lower the ratio is,
the more discriminative the feature is. NOV refers to non-overlapped speech while OV refers to
overlapped speech. We listed here the most discriminative features.

4.5 Discriminative features

One can see in Table 4.2 that the pitch value differs a lot between overlap and non-overlap seg-
ments. There is an increase of 46% in the mean of overlap in comparison to the non-overlap one
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Figure 4.2: Loudness peaks per second for overlapped and non-overlapped speech samples in the
category "webvideo".

and 71% for the median. However, the standard deviation remains similar which means that the
variation of the values doesn’t increase.

The Spectral Flux measures the degree of variation in the spectrum across time (Sadjadi &
Hansen, 2013). It is very discriminative for overlap as we can see: the mean increases by 47% and
the median by 60%.

Similarly, the overlap values of the Spectral Slope — the logarithmic power of the Mel band —
are really distinct from the non-overlap ones (increase of 39% for mean and 65% for median), as
well as for the fundamental frequency F0 (increase of 35% for mean and 44% for median) (Zheng,
Wang & Jia, 2020).

As could be supposed, the loudness, the length of unvoiced segments, and the rate of voiced
segments are also impacted by overlap. When many people talk at the same time, the ambient
is noisier. The voicing (voiced and unvoiced segments) corresponds to the vibration (or not) of
the vocal folds. The more people are talking, the more voiced speech is detected, which explains
why the mean length of unvoiced segments decreases with overlap while the number of voiced
segments per second increases.

4.6 Summary

At this stage, we identified six features that are impacted a lot by overlap: pitch, spectral flux,
fundamental frequency, loudness, spectral slope, and unvoiced or voiced segments.

These features compute values that are dissimilar to non-overlap ones, as they are greatly
higher or lower. From this analysis, we can conclude they certainly impact the performance of
speaker diarization methods applied on overlapped speech. To improve state-of-the-art, a new
perspective could be to base a model on non discriminative features.
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Figure 4.3: Voiced segments per second for overlapped and non-overlapped speech samples in
the category "webvideo".

Feature
Mean Median Std Dev

NOV OV Ratio NOV OV Ratio NOV OV

Pitch 439 641 1.46 367 628 1.71 218 233
SpectralFlux: amean 0.32 0.47 1.46 0.23 0.36 1.60 0.22 0.30
F0: meanFallingSlope 98 132 1.35 88 127 1.44 43 56
Loudness: amean 0.73 0.99 1.34 0.59 0.82 1.39 0.46 0.56
SlopeV0-500: amean 0.015 0.02 1.39 0.008 0.01 1.65 0.03 0.03
Unvoiced seg len: mean 0.41 0.24 0.59 0.31 0.19 0.61 0.25 0.13
Voiced seg/sec 1.93 2.78 1.44 2.01 2.62 1.32 0.56 0.76

Table 4.2: Statistical results of some features based on the study of 26 files.
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Chapter 5

Overlap detectors

5.1 Introduction

Overlapping segments can drastically reduce the quality of performance (Diliberto, Pereira & Niki-
forovskaja, 2021). Thus we have decided to experiment on overlap detection to improve the
performance.

The main idea is to develop a classifier which would detect if a segment of the recording
contains overlap or not.

Overlap detection is usually performed in one of these three ways: with signal processing, sta-
tistical methods or deep learning. The most popular and effective classifiers currently are deep
learning based (Diliberto, Pereira & Nikiforovskaja, 2021). The LSTM-based (Bullock, Bredin &
Garcia-Perera, 2020; Yoshioka et al., 2018) and CNN-based methods (Kunešová et al., 2019; An-
drei, Cucu & Burileanu, 2019; Málek & Žd’ánsky, 2020) are especially popular.

X-vectors are embeddings for recording segments which were trained by CNN. It was shown
that usage of x-vectors can improve the performance, as they might contain more information than
only about single speakers (Málek & Žd’ánsky, 2020). We want to further explore their usage for
overlap detection with different models.

In this chapter we describe the prepared data, the models used around x-vectors, the testing
system architecture, and finally the evaluation of the chosen methods.

5.2 Classification methods idea

The main idea was to use x-vectors as the embedding vectors of the audio segments to classify those
segments into overlap and non overlap. However, as shown in Fig. 5.1 the percentage of overlap
in the segment is quite often not 100%. That is why we have decided to divide the segments not
into two groups for classification, but into several, so that we could have more information about
the segments automatically.

5.3 Experimental setup

5.3.1 Data organization

We exploited already computed x-vectors on development data as a source material. We used the
following categories of recordings from the dataset to train and evaluate our methods: "webvideo",
"meeting", and "restaurant". These categories contain quite a lot of overlap segments which are of
a decent quality, this explains why we used them.

For each segment for which we had an x-vector, we calculated the ratio of the overlap part on
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Figure 5.1: Distribution of ratio of overlap. Colors show the way we have divided the ratios into
classes.

this segment. And therefore we produced the ratio which can be predicted.

Also, for each ratio we decided to which class it belongs, so that we had a classification problem,
as our final goal is to predict if there is or is not an overlap.

Afterwards, we built a dataset with the following parameters: number of segments information
to take before the goal segment, number of segments information to take after the goal segment,
and the identification numbers of the file where the segments are taken from. Then we had two
variants: either to have classes to predict or the ratio itself. The ratio intervals of the classes
are calculated using the following formula. If the ratio is smaller than 0.1 then the class is 0.
Otherwise the classes are equally distributed on the segment [0.1, 1] and are calculated with the
formula 1 + min(3, b(r − 0.1) · 4c), where r is the overlap ratio. Therefore we have 5 classes of
overlap.

The development data is divided into train and test parts in the proportion of 7:3. We divided
the segments into these two groups such that all the segments of one file belong to the same group.

5.3.2 Architecture

We used Object Oriented Programming to organize our code so that it was easy to modify. There are
base classes for regression and classification methods, which contain several evaluation methods
inside.

From each base class, classes from Sklearn (Pedregosa et al., 2011) and Pytorch (Paszke et
al., 2019) algorithms are inherited. The class for Sklearn algorithm allows to run all the needed
functionalities, by passing the name of the Sklearn method and its parameters. The class for Pytorch
algorithms allows to run Pytorch models by passing the base model itself, optimizer, epochs and
the device to run on.

The described above scheme of the classes can be seen on Fig. 5.2.

All the introduced algorithms take x-vectors as an input as can be seen in Fig. 5.3. However,
classification algorithms return the class of overlap, while regression ones return the ratio of over-
lap.

5.3.3 Evaluation methods

As we had quite imbalanced classes, we have decided to use UAR for evaluation of classification
results. UAR stands for Unweighted Average Recall and is an unweighted mean value of recall for
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Figure 5.2: Classes structure diagram of the project.

Figure 5.3: Block scheme of usage of the x-vectors.

each class. This evaluation methods helps to check that each class is predicted well enough, not
only the majoring one.

For evaluation of regression results we used R2 score, which is commonly used for regression
tasks and is a coefficient of determination. R2 score is a score based on the proportion of the
variance.

5.4 Models tested

First we used some simple methods as a baseline for classification on x-vectors. They are machine
learning methods from Sklearn library such as RidgeClassifier, SVC, SGDClassifier and Decision-
TreeClassifier.

As for Pytorch based models, we created a simple linear network for another baseline solution.
Besides we used the TDNN model introduced in a previous research as it was already designed for
x-vectors (Málek & Žd’ánsky, 2020). We call this model TDNNBasedModel, as it mainly consists
of TDNN layers which are CNN-based layers applied to plain vectors (Krizhevsky, Sutskever &
Hinton, 2012). The main idea is to gather a context of the value in the vector with some weights
for each value and create the next vector this way. If the context is symmetrical it can be done with
a one-dimensional convolution layer.
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As we have also seen, BLSTM usually work well; however, they have never been applied to
x-vectors. So we tried to apply the model from a previous research, which consists of BLSTM
layers (Bullock, Bredin & Garcia-Perera, 2020). LSTM layers are recurrent neural network layers
which iterate through the sequence and on each iteration take the previous output and use it as a
new input. Bidirectional LSTM or BLSTM repeats this process in the other direction. We also tried
a similar model with GRU units instead of BLSTM units. GRU stands for Gated Recurrent Unit,
and is a simpler version of LSTMs. We call these models BLSTMBasedModel and GRUBasedModel
respectively.

Figure 5.4: Used models parameters and layer structure.

The Pytorch models used are described by the layer structure in Fig. 5.4. The last layer in each
model outputs a tensor, which length is either the number of classes if we perform classification, or
1 if we perform regression. BLSTM and GRU based models iterate over different x-vectors, which
are taken as a context.

When used for classification, Pytorch models are trained with cross-entropy loss, while when
used for regression they are trained with mean squared error loss. The parameters of optimizers
were tuned for each model separately.

As classes were not balanced well (60% of the data corresponds to class 0, when there are 5
classes), during training we extracted segments from the classes, so that the probability to take a
segment from one class was equal to the probability to take a segment from another class. This
way we improved the performance for classification methods.

5.5 Evaluation results

Current results for classification experiments are shown in the Table 5.1. Table 5.2 shows the
results for regression experiments. We ran those algorithms on bigger contexts consisting of 3
vectors of information for previous segments, 1 vector of information for the following segment,
and smaller contexts which consist of 2 vectors of information for previous segments of a current
one.

Classification results show that the deep learning based model performs much better with the
increase of the context, while there might not be such a big difference for the simple machine
learning methods. The top performers are RidgeClassifier and TDNNBasedModel; they do not
have a big difference.

Regression results show that TDNNBasedModel improves with the increase of the context; how-
ever, the overall performance for all methods is low. The leaders here are Lasso and SVR. We
believe the results here might be that low because of the imbalance of data, which was fixed for
classification part but was not fixed for regression.
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Method UAR score on bigger context UAR score on smaller context
RidgeClassifier 0.26 0.23
SVC 0.20 0.20
SGDClassifier 0.24 0.23
DecisionTreeClassifier 0.22 0.22
LinearNet 0.24 0.24
TDNNBasedModel 0.25 0.23
BLSTMBasedModel 0.23 0.20
GRUBasedModel 0.22 0.19

Table 5.1: Evaluation results for classification methods.

Method R2 score on bigger context R2 score on smaller context
Lasso 0.006 -0.051
SVR 0.070 0.052
SGDRegressor -2e27 -1.5e27
DecisionTreeRegressor -0.79 -0.808
LinearNet -0.34 -0.333
TDNNBasedModel -0.065 -0.124
BLSTMBasedModel -0.498 -0.252
GRUBasedModel -1.207 -0.551

Table 5.2: Evaluation results for regression methods.

5.6 Summary

We built a convenient system for training and testing models for overlap detection based on x-
vectors. To that end, we implemented several methods; both classical machine learning methods
and deep learning methods.

The results of the evaluation show us that classification-based methods work better for overlap
prediction. We can also see that among deep learning methods, the TDNN-based is the best one and
shows an improvement with the increase of the context. We acknowledge that x-vectors contain
some information which can be used for overlap detection.

We have some more ideas on how to increase the performance of the introduced methods. The
deep learning models can be increased in size. It also makes sense to take more data for training
and to possibly perform some kind of data augmentation before. It would also be good to balance
data via adding new overlapped segments, which could be achieved by data augmentation or an
artificial audio recordings combination.
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Chapter 6

Conclusion

6.1 Summary

The intent of this project was to come up with and test suggestions to improve speaker diarization
with overlapped speech.

The first stage of this project was a bibliographic research, as described in our previous ar-
ticle (Diliberto, Pereira & Nikiforovskaja, 2021). This study of the state-of-the-art of diarization
methods enabled us to comprehend the three main kinds of approaches: using signal processing,
statistics, or more recently deep neural networks. Even if the new methods have good efficiency,
the performance is reduced with overlapped speech, and there is still space for improvement.

This part of the project aimed at running experiments to further analyze and understand how
speaker diarization is impacted by overlap, and finding suitable approaches to deal with overlapped
speech.

To determine the impact on performance of an overlapped speech, we tried to remove over-
lapping segments and to run the system baseline. Unfortunately, the experiment did not perform
as well as we expected. This can be explained by the fact that overlap has an influence even on
non-overlap regions. Other causes for diarization errors can be found such as the presence of
background noise.

We investigated the impact of overlapped speech on 90 acoustic features to determine if they
can be a cause for the loss of performance in speaker diarization. We identified six features that
have unexpected values when computed on overlap segments. This can explain the low efficiency
results for speaker diarization. As they are trained with non-overlap values, models won’t perform
well on speech with features having these disparate values.

We introduced the possibility of using x-vectors to train overlap detectors and implemented
several models to do that. We found out that classification interpretation of the problem of speech
overlap detection allows to have better results than regression interpretation. We also showed that
with the increase of segments in context we obtain higher results with deep learning methods.
Finally, we introduced several possible improvements, as we consider the usage of x-vectors as
promising.

In this report, we provided some suggestions about the improvement of speaker diarization
with overlapped speech. We identified the reasons of the low performance of actual systems by
exploring the results of overlap removal, and by computing and examining acoustic features. We
finally built a convenient system of overlap detection by comparing different deep neural network
models.
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6.2 Limitations

The experiments were conducted on the DIHARD II dataset, which was designed for the purposes
of the challenge on speaker diarization. Thus, the corpus is not representative of a real world
situation, as the overlap amount has been chosen and the speaker number has been controlled.

The results of our experiments are impacted by background noise. The outcome could be better
without any background noise; however, it is a normal phenomenon, which happens regularly in
real world situations.

The performance of our overlap detector is reduced by the small size of our dataset. Moreover,
this dataset contains a relatively low percentage of overlap (see Table 3.1), which can prejudice
the training of the model.

6.3 Future work

The same experiments using a real world corpus need to be explored as an extension of this work.

In addition, using tools to remove background noise as a preprocessing task might be useful.

For further development of overlap detectors, it is desirable to test our experiments on larger
corpora with a higher percentage of overlap.

Finally, the findings from our acoustic experiments can guide future works on speaker diariza-
tion with overlapped speech.
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