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Introduction

Analogy consists of four objects or words A, B, C, and D and draws a parallel between the
relation between A and B and the one between C' and D. Analogy can be used as a method of
reasoning and can be expressed by an analogical proportion, which is a statement such as “A is
to B as Cis to D”. An analogical proportion becomes an equation if one of its four objects is
unknown (Miclet et all, 2008).

Analogies have been extensively studied in Natural Language Processing, which resulted in
different formalizations with noteworthy applications in various domains such as derivational
morphology (Murena et al), 2020). Analogies on words can refer exclusively to their morphology
as in the following example:

R = {x | apple is to tree as apples is to z}.

Solving this form of equations can be done by calculating the set R of solutions x which satisfy
the analogy (Miclet et al), R008). In this case, the observed solution is based on morphological
variations of two words: “apple” and “tree”. The question of the correctness of an analogy
A : B : C: D is a difficult task; however, it has been tackled both formally and empirically
(Murena et al), 2020; Lim et al), 2019; Lepagd, 2003). Recent empirical works propose a data-
oriented strategies to learn the correctness of analogies from past observations. These strategies
are based on machine learning approaches.

In this project we focused on analogies, with a particular emphasis on morphological word
variations and how they determine the relation between different words. Our project was inspired
by the paper of Lim et al| (2019), which proposes a deep learning approach to train models of
semantic analogies on word embeddings ¥ by using pre-trained GloVe B(Pennington et all, 2014)
embeddings. The results of this approach were competitive for analogy classification and solving.
This led us to adapting the neural framework presented in Lim et al] (2019) to morphological
analogies. The major difference is that our morphological approach relies on customized model
embeddings, which were fully designed and trained during this project.

We used the SIGMORPHON 2016 dataset (Cotterell et all, 2016) as well as the JAPANESE
BIGGER ANALOGY TEST SET dataset released by Karpinska et al| (2018) to analyze how deep
learning could help us classify and solve morphological analogies. These datasets covered 11
languages in total, 10 of which are from the SIGMORPHON 2016 dataset (Cotterell et al., 2016),
while another one is from JAPANESE BIGGER ANALOGY TEST SET (Karpinska et all, 2018).
We used a character-level embedding to encode the morphemes of the words. To emphasize, we
focus on the structure of the words more than their meanings. Once the model is trained, it is
be able to embed any word, even those that did not appear during the training phase.

LA word embedding is word representation that allows words with similar meaning to have a similar represen-
tation in vector space
2@GloVe is an open-source project at Stanford used for obtaining word embeddings



This report is organized as follows. We start by introducing analogical proportions, moti-
vation, objective, and related work. We also introduce the datasets we used and discuss their
properties in Chapter [ll. Chapter [ introduces the approaches that we used to classify and solve
morphological analogies. We also discus some results we obtained and some of the challenges
we encountered. Chapter J illustrates the adaptability of our framework by showing that mod-
els trained on a given language may be transferred to a different language. In fact, the latter
revealed noteworthy (dis)similarities between languages. In Chapterg@, we briefly discuss the
results that we have obtained and describe the current status of the project. Apart from that, we
also highlight some of the challenges encountered through the development process and present
some topics of future work, namely, potential improvements to the current project.

To realize this project, we used exclusively Python (version 3.9) (Van Rossum & Drake,
2009) and in particular the deep learning-oriented library PyTorch (Paszke et al), 2019). We
used various built-in Python libraries including Pandas, Matplotlib, Numpy and Scikit-learn
for minor uses like storing data and support functions. To train the deep leaning models,
we required substantial computational resources, so experiments presented in this paper were
carried out using the Grid’5000 (Balouek et ali, 2013) testbed, supported by a scientific interest
group hosted by Inria and including CNRS, RENATER and several Universities as well as other
organizations (see https://www.grid5000.fr). All the codes we used during this project are
available on GitHub (see https://github.com/AmandineDecker/nn-morpho-analogy.git).


https://www.grid5000.fr
https://github.com/AmandineDecker/nn-morpho-analogy.git

Chapter 1

Definition of the problem

Analogical learning based on formal analogy can be applied to many problems in computational
linguistics. To quote Haspelmath (2002): “Morphology is the study of systematic co-variation
in the form and meaning of words.” When analyzing analogy in a morphological approach, we
are looking at the co-variation in the form of a single word. For example, “reader is to doer as
reading is to doing” is an analogy made of four tuples that present the different variations of the
lexicons “read” and “do” (Miclet & Delhay, 2003). Analyzing analogies based on morphology
allows the linguist to find how the word could vary based on gender, plurality, tense, mood,
etc. It also allows the linguist to predict how words change form based on these classified
patterns even if they are not familiar with certain words. When it comes to real life application,
morphological analogies are used as a method for acquiring new languages. It was one of the
evaluating methods used in assessment tests like SAT, TOEFL, and ACT, making around 20
percent of the questions posed ([Turney], 2001; Betrand, 2016). These questions mainly focus on
inflectional affixes in morphology. Therefore, in this project we aimed to:

e build a model that automatically determines if four words form a valid analogy;
e build a model which can solve morphological analogical equations;

e determine whether different languages share morphological properties.

As mentioned, for this project we adapted a novel approach, particularly a deep learning
one, to deal with morphological analogies. Various models have been proposed to solve semantic
analogies including Textual Analogy Parsing approach (TAP), Dependency Relation approach
(DP), Vector Space Model (VSM), and Neural Network approach (NN) (Lamm et al., 2018; Chiu
et all, 2007; Turney, 2006; Lim et al}, 2019). Out of these models, we were most interested in
VSM and NN approaches, and we finally decided to work with a NN and develop Lim’s approach
(Lim et ali, 2019) due to the interesting results that they achieved. Though this approach is
more complex than VSM, it is in fact not that complex to implement to solving morphological
analogies. We adapted Lim et al.’s approach by customising morphological word embeddings as,
to our knowledge, there were no ready made ones for this task. Thus we trained and developed
an embedding model for this project.

1.1 Tasks to address

The two tasks tackled by (Lim et al), 2019) are identification of analogical proportions and
solving of analogical equations, which are both based on natural language. Words are encoded
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Figure 1.1: Structure of the CNN as a classifier. (Lim et al., 2019)

as numerical vectors with a word embedding process.

In terms of neural networks, identifying an analogical proportion consists in deciding whether
A : B : C: D holds true or not: it is a binary classification task. Solving analogical propor-
tions can be seen as a regression task where we try to approximate the function f such that
f(A,B,C)=Dif A: B::C: D holds true.

Both tasks are further explained in the following subsections. In our project, we worked on
both of these tasks, where we train our custom embedding model on the classification task and
then use it to solve morphological analogies.

1.1.1 Classification

The classification task consists in determining if a quadruple (A, B, C, D) is a valid analogy or
not. The model is based on the structure provided in (Lim et al), 2019), the network can be

visualised on [FIGURE 1.1|.

As input of the model we have four vectors A, B, C, and D of size n. We stack them to get
a matrix of size n x 4. This matrix is the representation of the analogy A : B :: C' : D, it means
that it should be analysed as a structure containing two pairs of vectors: (A, B) and (C, D).

The size h x w : 1 x 2 of the filters of the first CNN layer respects the boundaries between
the two pairs. This layer should analyse each pair and be able to notice the differences and
similarities between the elements of each pair.

The second CNN layer should compare the results of the analysis of both pairs: if A and B
are different in the same way as C' and D then A: B :: C : D is a valid analogy.

Eventually all the results are flattened and used as input of a dense layer. We use a sigmoid
activation to get a result between 0 and 1 as we work with a binary classifier.

1.1.2 Solving analogies

Given the words A, B and C, solving analogical equations consists in producing the word D
such that A : B :: C : D holds true. From a machine learning perspective, a model which
can perform this task would take as input a triple (embed(A), embed(B), embed(C))= and would
produce as an output a X, which ideally would correspond to the embedding of the word D

Yembed(X) refers to the embedding of the word X
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Figure 1.2: Structure of the neural network for analogy solving. (tLim et alL I201d)

such that A : B :: C': D holds true. The analogy solving task thus requires two models: one
producing a vector based on three others, like what we just described, and also an embedding
model which we discuss in Sections and

The model we used to produce D given (A, B,C) is taken from (lle et all, bOld). The
assumption of the authors is that the X of the analogical equation A : B :: C': X can be found
thanks to a function f of A, B and C'. This point of view redefines the analogy solving task. It
becomes a multi-variable regression problem based on the following dataset:

A:B::C:D bel to the original
{((embed(A), embed(B), embed(C)), embed(D)) elongs to the origina }

set of valid analogies

The neural network they designed is described on Figure @ The structure reflects the
relevance of the relations between the different words of the analogy. Indeed, for an analogy
A: B : C: X, the link between A and B as well as the link between A and C is relevant to
determine X but also the relation between the pairs (A4, B) and (A, C). This is the reason why
the function g(embed(A), embed(B),embed(C)), which determines X, is approximated by two
hidden functions fi(embed(A),embed(B)) and fa(embed(A),embed(C)). Overall, we have:

X = g(fi(embed(A),embed(B)), fa(embed(A), embed(C))).

In the neural network, f; and fs are approximated by two linear layers. The input is of size
2 xn, where n is the embedding size, because the inputs are the concatenation of two embeddings

embed(A) and embed(B) or embed(A)and embed(C).

The output of each of these layers, of size 2 x n, are concatenated into a matrix of size 4 x n
and fed to a final linear layer which approximates g. The output is of size n which is the size of
an embedding so we can expect the model to produce a vector corresponding to the embedding
of X such that A: B:: C: X.



1.2 Properties of analogies for data augmentation

Deep learning approaches require a large amount of data. Therefore we took advantage of
some properties of analogies to produce more data based on our datasets, this process is called
data augmentation. Given one valid analogy, we can generate seven more valid analogies and
three invalid ones. Training our models on different equivalent forms of the same analogy helps
reducing overfitting. In this section, we describe the properties which enable us to augment our
datasets.

Analogies are classified and grouped based on the type of relation that exist between word
pairs. The first implementation of proportions was introduced by Ancient Greeks and was
used in the domain of numbers. Two examples worth mentioning are arithmetic proportion
and geometric proportion (Couceiro et al), 2017). These two examples illustrate the analogical
proportion statement of “A is to B as C is to D.”

o« A, B, C, and D are proportional if A — B = C — D (arthimetic);

e A, B, C, and D are proportional if % = % (geometric).

These quaternary relations obey the following axioms (Lepage, 2003):
(1) A: B:: A: B (reflexivity);
(2) A:B::C:D—C:D: A: B (symmetry);
(3) A:B::C:D — A:C:: B:D (central permutation);

From these properties, we can infer the following 8 equivalent analogies to A : B :: C' : D
(Cortes & Vapnik, 1995; Gladkova et all, 2016; Delhay & Miclet, 2004).

e A:B:(C:D (base form).

e C:D: A: B (symmetry).

e A:C : B:D (central permutation).
e B:A:D:C.

Proof.A:B::C’:D%A:C::B:D%B:D::A:C%B:A::D:C;

e D:B:(C:A.
Proof.C:D::A:BgC:A::D:BgD:B::C:A.
e D:C:B:A.
Pmof.B:A::D:C%D:C::B:A;
e C:A:D:B.
Proof.D:B::C:A%C:A::D:B;

e B:D:A:C.
Proof.A:C::B:D%B:D::A:C.



Fremdsprache pos=N, case=ACC, gen=FEM, num=PL Fremdsprachen

Figure 1.3: Example from the German training set for task 1.

In addition to these forms, we have 3 analogical forms which are considered invalid analogies
as they cannot be deduced from the base form A : B :: C': D and the axioms (1), (2), and (3)
and they contradict the intuition:

1. B:A:C:D;
2. C:B: A:D;
3. A:A::C:D.

We used these properties to augment our datasets for the classification and solving tasks:
we produced eight valid analogies and three invalid ones given a valid A : B :: C : D for the
classification task and only the eight valid ones for solving analogies.

1.3 Our dataset(s)

For this project, we used the SIGMORPHON 2016 dataset (Cotterell et al), 2016) and the
JAPANESE BIGGER ANALOGY TEST SET (Karpinska et all, 2018). As previously mentioned,
these datasets covered 11 languages in total, 10 of which are from the SiGMORPHON 2016
dataset while the other one is from JAPANESE BIGGER ANALOGY TEST SET. In this chapter,
we introduce both of these datasets and explain some of the preprocessing conducted before the
realization part of the project.

1.3.1 SIGMORPHON 2016 dataset

One of the datasets we used was SIGMORPHON 2016 (Cotterell et al}, 2016), which contained
training, development and test data. Data is available for 10 languages: Spanish, German,
Finnish, Russian, Turkish, Georgian, Navajo, Arabic, Hungarian and Maltese. Most of them are
considered as languages with rich inflection (Cotterell et al}, 2018). It is separated in 3 subtasks:
inflection, reinflection and unlabled reinflection. All the provided files are in UTF-8 encoded text
format. Each line of a file is an example for the task, the fields are separated by a tabulation.
In our experiments, we focused on the data from the inflection task, which is made up of triples
(A, F, B) of a source lemma A (ex: “cat”), a set of features F' (ex: pos=N,num=PL) and the
corresponding inflected form B (ex: “cats”). The forms and lemmas are encoded as simple
words while the tags are encoded as morphosyntactic descriptions (MSD), e.g., the grammatical
properties of the words such as their part of speech, case or number (among others).

A triple LEMMA, MSD, TARGET FORM from the German training data is presented on
Figure llj

1.3.2 Japanese Bigger Analogy Test Set

The dataset we used for Japanese was generated from pairs of words of the dataset released by
Karpinska et al, (2018). This dataset contains several files, each of them containing pairs of
linguistically related words. The list of relations is described in Table El]



Relation Example Pairs

verb__dict - mizenkei01 =5 - =b/bb 50
? verb_ dict - mizenkei02 s - M&/Tk 51
'S verb_dict - kateikei =) 5 RR /DA 57
2 verb_ dict - teta 2D B0 /o 50
2 verb_mizenkei0l - mizenkei02 £b — 2B/ HB 50
= verb_ mizenkei02 - kateikei 2B S22 /DR 57
5 verb_kateikei - teta RE > Ro/Do 50
S adj_dict - renyokei Bw— BRL/&K 50
= adj_dict - teta B\ — Rho/&do 50
™ adj_renyokei - teta B — Rbo/&do 50
.. noun_na_adj + ka g8 — ghft/Z x50 50
D adj + sa B\ —» BX/ kX 50
S noun + sha E L HEH/UoLlw 50
£ noun + kai K = B2/Beh0 50
£ noun_na adj + kan [l — F&/ &5 0A 50
Tgs noun_na_ adj + sei 7 - HE/E B0 52
.2 mnoun_na_adj + ryoku B -Eh/ 3o 50
& fu + noun_reg F — AF]/ 3D 50
£ dai + noun_na_ adj H - KE/Z0L 50
A jidoshi - tadoshi s - W3/27 50

Table 1.1: List of relations between the words of the Japanese dataset.

We were interested in inflectional and derivational morphology relations for which the dataset
contains respectively 515 and 502 pairs of words. For each two pairs with the same relation, we
produced an analogy, which gave us 26410 analogies in the end. This set is smaller than the
SIGMORPHON 2016 one, but this was not an issue when training the classification and embedding
model because we could produce 8 valid and 3 invalid analogies in total with a given valid one.
However, Japanese produced poor results when solving analogies which may be related to the
size of the dataset.

1.3.3 Loading and augmenting the data

To obtain morphological analogies from the SIGMORPHON 2016, we defined our analogical pro-
portions as follows: for any two triples of the form:

<A7 F? B>7 <A/7F,7 B/>

which share the same morphological features (F = F’), we considered A : B :: A’ : B’ an
analogical proportion. Figure @ presents two examples from the German training set for
building analogies.

Notice that only one analogy is generated for each pair of triples. For example, if we generate
A:B: A : B we do not generate A’ : B’ :: A: B as it is generated by the process introduced
in Section [L.2. During training and evaluation, for each sample of the dataset we generated
8 positive and 3 negative examples following the properties mentioned in Section . This
approach does not match the one of Lim et al., as they additionally generated the 8 equivalent
forms for each negative example.

The SIGMORPHON 2016 dataset contains training and testing files for all of the languages.



Fremdsprache pos=N, case=ACC, gen=FEM, num=PL Fremdsprachen
Absorption pos=N, case=ACC, gen=FEM, num=PL Absorptionen
absurd pos=ADJ, case=DAT, gen=FEM, num=SG absurder

“Fremdsprache”:“Fremdsprachen”::“ Absorption”:“ Absorptionen” is a valid analogy.
M.

“Fremdsprache”:“Fremdsprachen”::“absurd”:“absurder” is not because (“Fremdsprache”,
“Fremdsprachen”) and (“absurd”, “absurder”) do not share the same MSD.

Figure 1.4: Examples from the German training set for building analogies.

Language Train Dev Test

Arabic 373,240 7,671 555,312
Finnish 1,342,639 22,837 4,691,453
Georgian 3,553,763 67,457 8,368,323
German 994,740 17,222 1,480,256
Hungarian 3,280,891 70,565 66,195
Maltese 104,883 3,775 3,707
Navajo 502,637 33,976 4,843
Russian 1,965,533 32,214 6,421,514
Spanish 1,425,838 25,590 4,794,504
Turkish 606,873 11,518 11,360

Table 1.2: Number of analogies for each language before data augmentation.

For our project, we generated analogies by using these files. The number of analogies for each
language is presented in Table . For both the training and evaluation, we decided to work with
50,000 analogies to keep the training time reasonable (around 6 hours on Grid’5000). Maltese,
Navajo and Turkish were evaluated on less than 50,000 analogies because the related datasets
were too small as we can see in Table @

The Japanese dataset contains one file per transformation (listed in Table El!) We grouped
all these files together in one file following the same format of the SIGMORPHON 2016 files:
LEMMA, TRANSFORMATION, TARGET FORM. When we load the data, analogies are loaded based
on word pairs with the same relation, which yields 26410 analogies. We split the dataset to get
70 percent for training and 30 percent for testing. For reproducibility, the list of analogies for
training and testing were stored in separate files to ensure that the same sets were used every
time we evaluated.

To load the data and build the mentioned analogies, we used the “data.py” code provided
by Esteban Marquer. The “data.py” file contains the classes we use to import the data and
transform the words into vectors. The code can be manipulated using different modes (“train”,
“dev”, “test”, “test-covered”) and different languages (“Arabic”, “Finnish”, “Georgian”, “Ger-
man”, “Hungarian”, “Japanese”, “Maltese”, “Navajo”, “Russian”, “Spanish”, “Turkish”). An
augmentation function is introduced which, given an analogy, yields all the equivalent forms
based on the properties described in Section [l.2. Another function generated the invalid forms
described in Section [L.2. When we instantiate “TasklDataset” class from the “data.py” file, it
generates a list of quadruples where each quadruple represents an analogy. The quadruples can
be in either plain words or lists of integers. We used plain words with the GloVe pre-trained
embeddings, e.g., for German only (Section R.1]). The lists of integers were used with our custom
embedding model. These lists are built with a dictionary mapping characters to integers: we

10



first build the list of all the characters contained in the file and assign for each of them an integer
(e.g., an ID), then the encoding of a word is the list of IDs corresponding to the characters of
the word. For instance the German word “abfillig” is encoded as “[21, 22, 26, 50, 32, 32, 29,
27"

The dictionary thus depends on the input file. Note that the size and the content of the
embedding layer of our model depends on the size and the content of the dictionary, i.e., we
cannot use a file with a dictionary of size m with an embedding model of size n if n # m.
Moreover, if the dictionary has the right size but the IDs are not matched with the same letters
as in the dictionary used during training, the results can be unexpected. This topic is discussed
later in Section @,

1.3.4 (Dis)similarities between languages

In order to compare the different languages, and have more material to explain our results later,
we computed some statistics on the datasets.

1.3.4.1 Statistics about the words of the languages

Words length For all the languages except Japanese, the mean of the words (Appendix B
and Table El!) length lies between 7.6 and 11. For Japanese, the words mean length is of
5+ 3 (mean length + standard deviation), this dataset contains very short words (one or two
characters) as well as longer ones (up to eighteen characters).

Differences between training and testing set For all the languages except Japanese,
between 58% and 87% of the words of the test set are new compared to the words of the
training set (Table @) It means that the models were evaluated on new analogies but also
partially on analogies based on words never encountered. It was not the case for Japanese
because of the way we built the dataset. Indeed, we first generated all the possible analogies
based on the pairs of words we had and then split them between a training and a test set. If
we had split the pairs of words instead, we would have had new words in the test set but the
training and test sets would have been smaller than they currently are. As a comparison, the
datasets from SIGMORPHON 2016 contain at least 104,883 analogies for training against 18,487
for the JAPANESE BIGGER ANALOGY TEST SET.

Number of transformations We call a transformation the process used to go from the first
word to the second in a word pair. For languages of SIGMORPHON 2016 they are described by
an MSD and for Japanese they are the relations described in Table [L.1. Most languages have less
than 100 different transformations in the training set (Table @) and between 100 and 200 word
pairs per transformation in average (Figure ). Arabic and Turkish have more transformations
(187 and 223) and fewer pairs per transformation (54 and 65 in average) but since there are
w analogies generated for n word pairs with a given transformation, it should not impact the
learning process. For Maltese however, there are more than 3,000 different transformations for an
average of b word pairs per transformation. If the morphemes implied in these transformations
are very different for each other it could be a problem for the model as there is very few data for
each transformation but a lot of different patterns to learn. Moreover, the test set of Maltese
contains 105 new transformations compared to the test set which could be a problem if these
transformations imply different modifications from the ones involved in the transformations of

11



the training set as the model would never have encountered them. Arabic, German and Russian
test set also contain new transformations compared to their respective testing sets but to a lesser
extent (6 for Arabic, 2 for German and Russian).

Levenshtein distance The Levenshtein distance (Levenshtein, 1965) between two strings is
the minimal number of characters to edit (add, delete or modify) to change one string into the
other. We computed this distance on each pair of words of the datasets (Figure ) in order
to evaluate the amount of differences between the first and second word. Our assumption was
that a larger distance can imply more complex transformations and thus require a more complex
model. The average distance goes from 1.7 to 7.0. The languages with the smallest distance are
Georgian, German, Russian and Spanish and the ones with the biggest distance are Japanese
and Maltese. The range of Japanese words length is rather wide which could explain a high
Levenshtein distance if one word of the pair is short and the other long.

1.3.4.2 The sets of character dictionaries

The first step when we embed a word with our model consists in encoding this word with a list
of IDs. Each ID corresponds to a character present in the dataset, the German word “abféllig”
is encoded as “[21, 22, 26, 50, 32, 32, 29, 27]. We call character dictionary the mapping from
the characters to the IDs for one dataset. The character dictionaries vary from one dataset to
another as they contain only the characters used in the dataset.

Character dictionary lengths If we exclude Japanese which uses 632 characters, the lengths
of the set of characters in each dataset vary from 30 to 58 (Table @) In German, nouns start
with a capital letter. German thus uses the biggest character dictionary as it is the only one
containing capital letters. The Arabic is also longer than most because of the accented characters.

Comparisons between the character dictionaries of the languages For Finnish, Mal-
tese and Russian, the test set contains one character absent from the training set. To get the
full view of the differences in dictionaries between the languages, we computed the coverage of
the test dictionaries by the training dictionaries (Figure @) We computed it this way because
the models are trained on the training sets (and thus learn the related characters) and then
evaluated on the test sets (and thus need to deal with the characters of the test set). For a given
language, training to test coverage is 100% except for Finnish, Maltese and Russian for which
it is 97%. In average, all the languages except Georgian, Japanese and Russian have a coverage
of more than 45% (if we do not take Georgian, Japanese and Russian into consideration it rises
up to 60%) on other languages. Georgian, Japanese and Russian use a different alphabet than
the other languages which explains their poor coverage of and by other languages.

1.3.4.3 Language families

We investigated the proximity of the languages we work with thanks to their families. (Cole &
Siebert-Cole, 2020) provides the family tree of 10 out of 11 languages. Maltese is not represented
but based on (Harwood, 2021) we chose to represent it next to Arabic in the Afro-Asiatic family
as a Semitic language. In Figure [1.5, the languages are linked to their group or family which
are also linked together. Languages closer together belong to the same family as for Spanish
and German. Groups and families are also linked to one another depending on their history.
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Figure 1.5: Language tree of the 11 languages in the datasets.

For example, Georgian belongs to the Caucasian family, which descends from the Uralic family
that includes Hungarian and Finnish. Languages from the Afro-Asiatic family are closer to the
languages of the Uralic family than those of the American family.
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Chapter 2

Solving analogy related tasks

Before introducing this chapter, we are proud to say that most of the results discussed in Sec-
tions @ and led to the writing of a paper which was submitted to the IEEE International
Conference on Data Science and Advanced Analytics 2021.

For our project, we based our experiments on the two tasks described in Lim et al| (2019), i.e.,
analogy classification and solving of analogical equations, which requires a way to represent words
numerically. They worked with the pre-trained word embeddings for English provided by GloVe
Pennington et al} (2014). However, we worked with 11 languages (10 from SIGMORPHON 2016 as
well as Japanese (Karpinska et al), 2018)) for which GloVe embeddings are not necessarily avail-
able. We could have used similar tools which cover more languages such as Grave et al| (2018)
which covers 157 languages. However, our experiments with GloVe (Section P.1)) showed us that
pre-trained word embeddings model tend not to cover the entirety of our dataset. Moreover,
these classical word embeddings are trained on word co-occurrence among the training texts,
they are thus usually able to solve semantic analogies such as “man” : “woman’” :: “king” : X
through co-occurrence similarities. But we dealt with morphological analogies and, for most
languages, morphology is not sufficiently linked to semantics for these models to perform as
good as we would like.

For all these reasons we developed a custom word embedding model focused on morphology.
Our model was trained along the classifier for a given language. The idea was to learn sub-words
and morphemes from single words (as opposed to texts for classical word embedding models).
This difference enabled us to embed any word even if it was not encountered during the training
phase, and to model morphology through the sub-words and morphemes.

2.1 First attempt with pre-trained GloVe embeddings

Our first experiment consisted in using GloVe embeddings with the regression model for which
Esteban Marquer wrote the code following the structure of Lim et al, (2019). We used the
German data of the first task of SIGMORPHON 2016 to build a set of valid analogies with
the method described in Section . We obtained a set of 994,740 quadruples of the form
(“abchasisch”, “abchasischerem”; “abchasisch”, “abchasischerem”) which correspond to valid
analogies: a quadruple (A, B, C, D) corresponds to the valid analogy A: B :: C: D.

When the data is loaded, each word of the quadruple is embedded with GloVe into vectors
of size n = 300. We chose n = 300 as it is the biggest embedding size used by Lim et al| (2019)
and a bigger size most likely provides better results.
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As explained in Section @, given one valid analogy, we are able to generate 7 more with
permutations. Our dataset thus contains 8 x 99,4740 = 7,957, 920 quadruples representing valid
analogies. We trained our model on this augmented dataset.

Our first experiments enabled us to determine that one epoch took around 3 hours to run.
We decided to train our model for 50 epochs, but we realised that the loss didn’t decrease at
the end of the training (it oscillated), which indicates that the model did not learn.

It could partly be explained by the fact that GloVe embeddings do not take morphology
into account, but this explanation alone was not satisfactory. We thus decided to find a way to
decrease the running time so that we could investigate the issues. We tried to use bigger data
batches and to store the embedded quadruples in a file we would load instead of embedding each
word during the training phase. However, none of these ideas significantly reduced the running
time. We concluded that the size of the dataset was probably responsible for the time needed
and decided to train a new model on 50,000 analogies only (before augmentation) for 20 epochs.
These training conditions are the same as for the embedding model described in Section ,
which is the one we used for all our other experiments.

As expected based on the results on the full dataset, the loss did not decrease on the smaller
dataset. When we evaluated the model (see Section ), the accuracy was of 100% which did
not match the results from the loss. For this reason, we investigated the embeddings and noticed
that many words were embedded with a vector full of zeros. After further analysis, we discovered
that 49% of the words in the training set and 51% of the words in the test set were not present in
the GloVe file we used to embed our words and were thus embedded by the default zero vector.
Since an analogy is based on 4 words, it means that more than half of the analogies used for
training contained at least one word embedded with a zero vector. This could explain why the
model does not learn. Indeed, the model was trained on tuples (embed(A), embed(B), embed(C'))
and was expected to produce embed(D), where A : B :: C': D holds true. But if one of the word
was embedded with a zero vector, the analogy did not hold anymore, so the data we used for
training the model contained invalid analogies that were (wrongfully) considered valid.

Moreover, if A, B, C'and D are embedded as zero vectors, the model is taught that producing
a zero vector is the right thing to do. Therefore, since this kind of data was probably fed many
times to the model, it probably produced a zero vector all the time. As for the accuracy of
100%, we confirmed that all the expected and produced vectors were full of zeros.

After such results, we decided to abandon GloVe embeddings and started working on a
character embedding model which is more relevant for a morphology task. At this stage, we had
several options.

The first one consisted in training a character-level encoder trained with the regression model
(Figure @) The encoder would have embedded A, B, C' and D separately and then the model
would have run on these embeddings instead of the GloVe ones. However, this option has a
major issue. The solution of the analogical equation A : A :: A : X is always A, thus the
model would always be correct if it learned a dummy embedding (the same embedding for all
the possible inputs) and produced the same dummy embedding as a result.

The second option was also to create a character-level encoder, but trained on the classifica-
tion task (Figure [L.1]). Contrary to the regression task, negative examples are directly available
for the classification task thanks to the permutation properties of analogies. These negative
examples would force the model to learn real embeddings.

Eventually the last option was to create an auto-encoder trained separately. This model
could work directly on the analogy solving task and would enable us to produce an actual word
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(and not an embedding) as output of the regression model. However, the literature does not
seem very developed for character level auto-encoders while we had some leads for an encoder.
Hence, this task seemed too complicated for us. It still remains an interesting lead for future
work.

2.2 Custom embedding model

Our aim was to solve morphological analogies. Our assumption was that we needed to investigate
the structure of the words more than their meanings. For this reason, a character embedding
model was more relevant than GloVe embeddings. Moreover, a character-level embedding model,
once trained, is able to embed any word even those not encountered during the training phase,
which solves the issue of the zero vector for unknown words ([Vania, 2020).

2.2.1 Structure of our character-level embedding model

The structure described in Kim et alf (2016) is a CNN-LSTM language model where the CNN
part embeds the words while the LSTM part investigates the relation between the words, i.e.,
the context. As our aim was to embed words based on their morphological properties, the
context was meaningless for our task. Our embedding model was thus inspired from the CNN
part only.

Figure El] describes the structure of our model. We first use a character embedding layer to
encode each character of the word with a vector of size m. Characters never encountered during
the training phase are embedded with vectors full of 0. At the beginning and at the end of the
word, we add special vectors to signify the boundaries of the word. For a word of |w| characters,
we obtain a (|w| + 2) x m vector. We chose m = 512 for Japanese and m = 64 for the other
languages. If we put Japanese aside, the biggest character dictionary contains 58 characters so
we chose m = 64 because it is the closest power of 2 to 58 + 2. Japanese’s dictionary contains
632 characters so we chose m = 512.

Then the idea is to apply filters of different sizes on the embedding, each filter should
recognize a pattern in the word: a filter of size 2 could recognize affixes such as “ab-”, “be-”,
“in-" or “-en” in German for instance. We did not find literature on the maximal length of
morphemes for our languages but we looked at an affix dictionary for German (I[DS, 2018) in
order to have an idea about it. Most of the affixes were of length 2 to 4 so we decided to use
filters of size 2 to 6 to cover as many patterns as possible. We did not investigate the other
languages but we could improve our model in the future with more information about the size
of the morphemes. For each size we arbitrarily chose to use 16 filters. Further experiments are

needed to determine the most efficient number of filters and the different sizes to use.

After the CNN layers, a max pooling layer is applied: we keep only the greatest number
produced by each of the 80 filters (16 filters of 5 widths) so that only the most important patterns
appear in the final embedding. We finally concatenate the results to produce an embedding of
size 80.

2.2.2 Training phase and classification results

We decided to train this encoder with our classification model. Since we had both positive and
negative data thanks to the properties of analogies (see Section @), the encoder did not learn
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Figure 2.1: Structure of the CNN as a character level embedding model.
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dummy embeddings as it could have done without negative data. Indeed with only positive
data, learning the same embedding for all the words would make all the analogies look like
A:A: A: A, which is valid and the model would always be right. But if the model is trained
on both positive and negative data, the previous dummy embeddings would lead it to classify
invalid analogies as valid as the four elements would be equal. Using both positive and negative
data forced it to learn meaningful embeddings.

We used the SIGMORPHON 2016 dataset for the training which enabled us to train 10 models
(one for each language). Since the training and testing sets are distinct in this dataset, it
is possible that the training file contains characters the testing file does not contain or the
opposite (Table ). In the first case, it implies that many characters of the character to
integer dictionary can have a different IDs during the training and the test part, so it yields
poor results. We fixed this issue by using the dictionary produced for training as the dictionary
for the test. However, this technique does not work in the opposite case, when the test file
contains characters the training file does not contain.

A solution to both these issues would be using the UTF-8 codes as IDs, but the vocabulary
would become very large as well as the embedding model since both are related. Another solution
would be using an ID for the unknown characters, the same way context based word embeddings
model use a vector for unknown words. Nevertheless, this solution would require that we retrain
all of our models with one more character. To avoid this problem, we decided to use embeddings
full of 0 for the unknown characters.

Most of the SIGMORPHON 2016 files yield several hundreds of thousands analogies and each
analogy was used 11 times by the model (8 valid forms, 3 invalid). Using the entire datasets for
the training would have taken a very long time, as it did with GloVe, so we decided to use only
subsets of 50,000 analogies and train for 20 epochs (which takes around 6 hours).

We also tried our model on Japanese, an ideographic language, to see if the results were
similar. The classification task produced very good results (they are among the best ones) but
the test set was small and even if the analogies of the test set were not used for training, they
were based on the same words, while the test sets of other languages contain new words. For
these reasons, Japanese could be less complex to deal with for the model.

The results of the classification task are described in Table @ Most of the time, the
classification of invalid analogies is less accurate than valid analogies. We thought about two
major reasons for this. The first one is the presence of exceptions in the datasets (irregular verbs
for instance). Such transformations are less likely to be shared by many words and are thus not
recognised by our model. The second reason is the training setting. Since the model is trained
on 3 invalid analogies and 8 valid analogies, in practice 150,000 invalid analogies and 400, 000
valid ones in total, it is possible that the model needs to be trained on more invalid data to
reach similar results as with valid data. We could apply the permutations properties on the 3
invalid analogies so that we would have 3 x 8 invalid analogies for 8 valid ones. However this
could lead the model to focus more on invalid analogies and thus induce a drop in the accuracy
for valid analogies. Moreover, we use valid and invalid data to make sure the embedding model
does not learn dummy embeddings and an imbalance between the number of positive examples
and the number of negative example could produce this result.

Examples for classification task on Arabic and German are shown in Table @ Examples
for all the languages are available in appendices (Tables and @)
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Language Valid analogies Invalid analogies

Arabic 99.89 97.52
Finnish 99.44 82.62
Georgian 99.83 91.71
German 99.48 89.01
Hungarian 99.99 98.81
Japanese 99.99 98.65
Maltese 99.96 77.83
Navajo 99.53 90.82
Russian 97.95 79.85
Spanish 99.94 78.33
Turkish 99.48 92.63

Table 2.1: Accuracy results (in %) for the classification task. The Japanese model was trained
on 18,487 analogies and tested on 7,923 of the same dataset (the two subsets were distinct). All
the other models were trained on 50,000 analogies and tested on 50, 000 of different sets except
for Maltese, Navajo and Turkish which were tested on 3,707, 4,843 and 11,360 analogies due
to the size of the dataset.

No. ‘ Lang. ‘ Expected ‘ Result ‘ Analogy ‘ Form

1 ‘ ARA ‘ valid ‘ valid ‘ naffaga:naffagqna::dammama:dammamna ‘ A:B::C:D
2 ‘ ARA ‘ valid ‘ invalid ‘ bayya‘una:al-bayya‘u::nawarun:an-nawariyyu ‘ B:A::D:C
3 ‘ ARA ‘ invalid ‘ invalid ‘ dammama:naffagna::naffaga:dammamna ‘ C:B::A:D
4 ‘ ARA ‘ invalid ‘ valid ‘ al->amti®atu:al-mata‘u::al-qimatu:al-qiyamu ‘ B:A::C:D
) ‘ GE ‘ valid ‘ valid ‘ extrovertiert:extrovertiertere::angelséachsisch:angelséchsischere ‘ A:B:C:D
6 ‘ GE ‘ valid ‘ invalid ‘ entgehen:entgingen::schwéichen:schwichten ‘ A:B::C:D
7 ‘ GE ‘ invalid ‘ invalid ‘ extrovertiertere:extrovertiert::angelsichsisch:angelséachsischere ‘ B:A:C:D
8 ‘ GE ‘ invalid ‘ valid ‘ unkommunikative:unkommunikativ::abgestrahlt:abgestrahlte ‘ B:A:C:D

Table 2.2: Classification examples of Arabic (ARA) and German (GE). We call the words A,
B, C, and D depending on the order they appear in the dataset. A always forms a pair with B
and C always forms a pair with D.

For Arabic, in example (2), the reason the model fails might be due to the presence of a dicrtic
character in B that the model interprets as an affix. The model, therefore, reads the transfor-
mation between B and D as not corresponding to one another. For example (4), the analogy is
invalid because of its form but the model fails to notice it, which may be related to the smaller
amount of negative data during the training compared to positive data.

For German, example (6) uses an irregular verb, which probably explains why the model fails.
As for example (8), the analogy is invalid because of its form, like example (4), which the model
also fails to notice.
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2.3 Solving analogies

The classification task enabled us to train embedding models which hopefully represent accu-
rately the morphology of the words. This leads us to the analogy solving task. Indeed, for an
analogical equation A : B :: C': X, the embeddings must encode the morphological features of
A, B and C so that the relation between A and B is also to be found between embed(A) and
embed(B). As explained in Section , we use the neural network proposed by Lim et al.
(2019) to solve this task.

The main issue with our approach is that we use a CNN encoder and not an auto-encoder.
It means that when the neural network for regression produces a vector, we have no tool to
transform this vector into a word. In order to match the produced vectors with actual words,
we considered all the embeddings of the words in the dataset for a given language and assumed
the closest vector to the produced one would be chosen as output. This method raises several
questions especially regarding the metrics we use and the way to deal with words equally close
to each others.

Our aim was to compare our results to those of Murena et al| (2020) who proposed an
empirical approach to solve morphological analogies which produced competitive results.

2.3.1 Evaluation method

Before training our models, we had to decide on an evaluation method. As mentioned before,
we worked with a word encoder and thus obtained vectors we cannot decode as output from the
regression neural network. These vectors were not equal to the expected ones so comparing the
expected vectors to the produced ones gave an accuracy of 0%. However, if we choose a method
to match a produced vector with one corresponding to the embedding of a word of the dataset
and this vector corresponds to the expected ones, we can consider the produced vector as right.

Given a produced vector, the idea was to find the closest one in a set of known embeddings.
To do this, we first stored the embeddings of all the words in the dataset of a given language,
e.g. the words of the testing set as well as those of the training set. As we evaluated our model
on the testing set, we did not need the embeddings of the words of the training set. However,
if we search among a bigger set, the accuracy we compute is more meaningful as it reduces the
possibility to get the right vector out of luck.

Then we had to choose a_(dis)similarity metrics. The Cosine similarity and the Euclidean
distance given by Equation (R.1]) and Equation (R.2), respectively, are the most commonly used:

XY
Cosine_similarity(X,Y) = ———— (2.1)
[ X[[Y]]
Euclidean__distance(X,Y) = —yi)? (2.2)
where X = (21,...,2,) and Y = (y1,...,yn). Hence we decided to use both and compare

the results. More precisely, given a produced vector X, we computed its Cosine similarity
(resp. Euclidean distance) with all the stored embeddings and retrieved the vector Y such that
maximizes Cosine__similarity(X,Y) (resp. minimizes Fuclidean__distance(X,Y)).

This method enabled us to match each produced vector with one belonging to the stored
embeddings. As the expected tensors are embeddings of words present in this set as well, if
the produced vector is the right one then the one closest to it should be exactly the expected
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one. However, the process we used to store and then load the embeddings slightly modified
the tensors values: from the fifth decimal, the values of the components of the produced tensors
differ from the values of the components of the stored tensors. To tackle this issue, we considered
that the expected vector and the closest one were the same if their components were equal two
by two up to the fourth decimal.

With this method, there was a possibility that several vectors were equally close to the
produced one. During our first evaluation, we decided to use the first found vector with the
biggest similarity (resp. smallest distance). Later, we decided to check if the expected vector
was slightly further and thus considered all the vectors in a given similarity (resp. distance)
range.

2.3.2 Results

We trained the models for each language separately. For all of them, the training set consisted
in 50,000 analogies. The four words were embedded thanks to the trained CNN neural network
corresponding to the language of the data. Then for each quadruple of vectors, we used the
eight valid permutations as input data: for a valid permutation of the form A : B :: C : D,
we applied the regression model on (embed(A), embed(B),embed(C)) and compared the result
to embed(D) with mean squared error before the back-propagation. In the end, the model was
trained on 400,000 analogies.

2.3.2.1 First evaluation

As explained before, the evaluation method was such that the produced vector could be matched
with several vectors of the set of stored embeddings. For our first evaluation, we compared the
expected vectors only with the first matching vector among the stored ones (e.g. the one with
the smallest identifier). The results are described in Table R.3, the last column contains the
results of (Murena et al}, 2020) for the same task.

Japanese produced the worst results which could be explained by the length of the dataset
as well as the distribution of the embeddings. Also, our results are not as good as those of
(Murena et al), 2020) on all the languages. However, the language on which it performed best
is Georgian with both approaches, and the two worst languages (apart from Japanese) are also
the same. This indicated that our approach was relevant.

2.3.2.2 Further evaluation

Our results for solving analogies were far from the ones of (Murena et all, 2020) for most
languages but they were encouraging. Thus we wanted to know if the right vector was far
from the predicted one when our model failed. If not, it would indicate our neural approach is
relevant and could achieve better results with more training and/or fine-tuning. To do this, we
implemented a new evaluation method.

1. Given A, B, and C our model produces Dp,cgicted;

2. We then compute the Cosine similarity (resp. Euclidean distance) between Dp,cgicteqd and
all the stored embeddings;

3. We order the stored embeddings according to their Cosine similarity (resp. Euclidean
distance) with Dpycdicteq S0 that the vector of rank 1 is the closest to Dpyedicted;
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Language Cosine similarity Euclidean distance (Murena et al,, 2020)

Arabic 51.41 51.53 87.18
Finnish 72.84 72.23 93.69
Georgian 93.37 93.44 99.35
German 87.55 87.78 98.84
Hungarian 68.31 68.13 95.71
Japanese 19.76 17.50 /

Maltese 75.68 76.94 96.38
Navajo 45.81 47.41 81.21
Russian 69.57 69.05 96.41
Spanish 87.86 87.53 96.73
Turkish 70.10 67.77 89.45

Table 2.3: Accuracy results (in %) for the analogy solving task. The Japanese model was trained
on 18,487 analogies and tested on 7,923 of the same dataset (the two subsets were distinct). All
the other models were trained on 50,000 analogies and tested on 50, 000 of different sets except
for Maltese, Navajo and Turkish which were tested on 3,707, 4,843 and 11,360 analogies due
to the size of the dataset.

4. We retrieve the rank 1 vector D jpsest;

5. We retrieve the next vectors in the ordered list until the Cosine similarity (resp. Euclidean
distance) is too small (resp. too large) compared to the one of the vector of rank 1, we
use a parameter k to make the maximal difference vary;

6. If the expected vector is among the retrieved ones then we consider the model was right
and we retrieve the rank of the right vector for statistics;

7. If the expected vector is not among the retrieved ones then we consider our model failed
and add a 0 to the list of ranks.

In practice, if Cosine_similarity(Dpredicteds Deiosest) = So, we retrieved all the vectors ¢ such
that Cosine__similarity(Dpredicted, t) < (1 — k) * so for k € {0,0.01,0.02,0.05}. We used k =0
to see if there were often several vectors which shared the same similarity (resp. distance) from
the predicted one, which is not the case (the length of the sets of retrieved vectors are available
in appendices: Table @) Table @ provides a few examples of the words produced by the
mo@ for k = 0.02. Examples for all the languages are available in appendices (see Tables
to C.5).

Several factors influence why the Arabic model would fail. Even when the size is set, the
variety of affixes in Arabic could affect the validity of the analogy. Both pairs should follow the
same pattern (have the same format and use the same affix) for the model to be valid. Another
factor is the fact that the model might interpret that some words contain an affix, when, in fact,
they don’t (for instance the word “determine” seems to contain the affix “de-"). As for the third
Arabic example, we aren’t sure why the model failed. The same words were used in the previous
examples but presented in a different order (words belonging to the same pair are placed next
to one another) and the model was able to find the expected result. Therefore, we aren’t able
to provide an explanation as to why the model failed to find the expected result for the third
example.
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Analogical equation ‘ Expected ‘ Rank

al-’abzanu:al-’abzanayni::az-za‘imu::? ‘ az-za‘imayni ‘ 1
Results = . —c: . —c: . ¢ . . .. .
k:> az-za®imayni, al-ma‘izayni, al-ma‘izatayni, al-ma‘zatayni, al-qirmiziyyayni,

=0.02
al-quzimiyyayni, al-qamisayni, al-qirmiziyyatayni, al-quzimiyyatayni

]
e al-°abzanayni:al-°abzanu::az-za“imayni::? ‘ az-za1mu ‘ 4
g Results c —cs —c: = —c- . ..
< | ——— al-ma‘zatu, al-ma‘izatu, al-ma‘izu, az-za®imu, al-mawa‘izu, al-qirmiziyyatu,
£=0.02
al-ma‘lumu
az-za‘imayni:az-za’tmu::al->abzanayni::? ‘ al-’abzanu ‘ Not found
Results . 11— _ vy .
?—_00? al-juzay®u, al-°iblisu, al-°atlatu, al-baksisu, al-juz°u
toxisch:populér::toxischere::? ‘ populérere ‘ 1
Results populirere, populére
k=0.02 ’
g
< ausgestorben:ausgestorbenes::mitverantwortlich::? ‘ mitverantwortliches ‘ 2
= Result . . . . . .
(50 kesu > mitverantwortlicher, mitverantwortliches, mitverantwortliche
=0.02
applizierten:applizieren::versihen::? ‘ versehen ‘ Not found
Results .. . .
W versahen, verschlingen, verschieben

Table 2.4: Examples for Arabic and German for solving analogies.

In the first German example, the right vector is the one closest to the vector produced by
the model. In the second example however, the right vector is the second one. When we look at
the words retrieved for k = 2, we can see that they are similar (they differ on their last character
only) which could explain that our model was not completely accurate. Eventually the third
German example uses an irregular verb, which probably explains why the model fails.

During these evaluations, we computed the mean reciprocal rank (MRR) given by

1L 1
MRR = —3

(n the number of evaluations)

- rank;

as well as the mean rank of the right vector when it is greater than one. The MRR evaluates
the rank of the correct vector among the set of found ones, if the correct one is not in the set
then the reciprocal rank for this evaluation is 0. Thus a value close to 1 means the right vector
is often close to the predicted one while a value close to 0 means the right vector is very far from
the predicted one.

The results for £ € 0.01,0.02,0.05 are described in Table @ As we could expect, the
accuracy rises when we increase the search area. The results are more striking for Cosine
similarity than Euclidean distance because we discover more vectors when we slightly decrease
the Cosine similarity than when we increase the Fuclidean distance from the same percentage
due to the definition of these metrics. For this reason from now on we will only refer to the
results with Cosine similarity (the full results are available in appendices: Tables E and @)
With this metric, our model outperforms (Murena et al}, 2020) for some languages.

Statistics about the mean rank of the right vector, available in Table @, show that most of
the time, the rank of the right vector is not very high. For some languages the mean rank for
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Cosine similarity Fuclidean distance
k=0 k=001 k=002 k£=005|k=0 k=001 k=002 k=0.05

Arabic 51.41 73.06 85.29 97.19 51.53 54.49 57.35 65.40
Finnish 72.84 90.47 95.92 99.06 72.21 74.10 75.78 80.33
Georgian 93.37 96.98 97.77 98.65 93.44 93.88 94.27 95.24
German 87.55 93.00 95.49 98.38 87.78 88.51 89.16 90.92
Hungarian | 68.31 86.75 93.36 98.32 68.13 69.97 71.79 76.90
Japanese 19.76 68.37 78.09 93.04 17.50 19.42 21.51 27.93
Maltese 75.68 84.10 86.96 91.26 76.94 78.03 79.26 82.68
Navajo 45.81 57.52 67.25 85.07 47.41 49.67 51.92 58.55
Russian 69.56 77.58 83.89 94.27 69.04 70.44 71.86 75.62
Spanish 87.86 96.05 97.88 99.24 87.53 88.62 89.59 92.01
Turkish 70.10 80.64 86.61 94.72 67.77 69.58 71.26 76.03

Table 2.5: Accuracy (in %) for the analogy regression task when searching for the expected
vector in a wider range.

k = 0.05 is much higher than for other values but the standard deviation shows a high variability
in these cases. We confirmed with boxplots (Figure El!) that these higher values were due to
outliers.

These results reinforce the idea that our neural network approach is suitable and it is possible
that with further work on the embedding model our approach would give similar results when
considering only the closest vector as a valid candidate. Developing an auto-encoder, and thereby
fixing all the issues related to the evaluation method is all the more an interesting lead.

MRR MR4+sd when rank>1

k=001 k£=0.02 k£=0.05 ‘ k=0.01 k=0.02 k=0.05
Arabic 0.60 0.63 0.64 2.94+1.6 4.444.3 12.2428.4
Finnish 0.80 0.81 0.81 3.14+2.0 4.6+5.2 9.8426.2
Georgian 0.95 0.95 0.96 2.14+0.5 2.441.2 4.248.2
German 0.90 0.91 0.92 2.3£0.7 2.7£1.8 5.3+12.1
Hungarian 0.76 0.77 0.78 2.9+1.4 3.4+2.1 4.1+£4.0
Japanese 0.28 0.30 0.30 32.3£53.8 38.4+77.3 39.7£72.9
Maltese 0.79 0.79 0.80 4.6+6.2 8.0421.4 17.84124.5
Navajo 0.51 0.54 0.58 2.440.9 3.0+£1.7 5.3+7.4
Russian 0.73 0.76 0.80 2.240.5 2.441.0 3.3+4.1
Spanish 0.92 0.92 0.92 2.5+1.1 3.04+2.7 5.3+14.2
Turkish 0.75 0.77 0.79 2.34+0.8 2.7£1.4 4.445.7

Table 2.6: Mean reciprocal rank of the right vector and mean rank + standard deviation when
the rank is higher than 1.
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Chapter 3

Transfer learning

As explained before, we trained two models during the classification task: the embedding model
and the classification model. These models are dependent on the language that they were
trained on. For instance, the dictionary of characters depends on the language, and they are
also interdependent since they are trained together. We applied the different models trained on
each language to the other languages of the dataset. The objective is to explore the generalization
capabilities of the CNN model, and to test its dependence on the training language.

We wanted to see how these models could transfer from one language to another. To evaluate
their generalization capacity, we ran the evaluation using each model on all the languages. In
Section we describe the results when transferring both the embedding and classification
models, which we called full transfer. Then in Section B.2 we transfer only the classification model
(the data is embedded with the “right” embedding model), which we called partial transfer.

3.1 Full transfer

The results for full transfer on positive and negative data are presented in Figure EII In this
experiment, the embedding model and the classifier were congruent, i.e. they were trained
together. For positive data the results are most of the time above 90% except for Arabic and
Navajo words. They are more heterogeneous for negative data. The main reason is probably
the character dictionary gap between the language of the models and the language of the data.
Characters unknown to the model are indeed embedded as zeros. If the data contains mainly
unknown characters, the embeddings do not really reflect the words.

Accuracy close to 100% for positive data with accuracy close to 0% for negative data is most
likely the result of almost unrecognized languages. Indeed, in this case most of the words would
be embedded as € and the analogies would look like € : € :: € : € whether in positive or negative
form, so the positive analogies would rightly be classified as valid (accuracy of 100%) while the
invalid ones would falsely be classified as valid (accuracy of 0%).

The Hungarian models seem interesting if we want to work with analogies of several languages
at the same time.
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Figure 3.1: Accuracy for full transfer of the models.

3.2 Partial transfer

To solve the issues we had with character dictionaries for full transfer, we tried to transfer only
the classifier. However, it induced that the embedding model and classification model were no
more congruent. The results are displayed in Figure B.2. As for the full transfer, overall results
are good even though they remain heterogeneous for negative data.

As we used the embedding model corresponding to the language, we have less combinations
producing an accuracy of 0% for negative data. Only Georgian to Japanese, and Spanish to
Arabic and Japanese produce this result.

3.3 Discussion

The first observation we can make is the non-symmetry of the diagrams: the results are not
necessarily similar when we transfer from a given language to the others to the results when
we transfer from other languages to that language. For instance the Hungarian model transfers
really well to all the other languages while most of the other models are not that efficient with
Hungarian (which is even more the case for partial transfer than full transfer). The statistics we
computed on the different languages do not indicate particularities of Hungarian compared to the
other languages. However, Hungarian has a “particularly rich morphology” (, ) using
inflection, derivation and compounding. We have no proof that it influences the transferability
of the model but further investigations about the different morphological transformations used
by the languages could improve our understanding of these results.

Then we can see that the Arabic model is efficient for full transfer but not really for partial
transfer. This may be due to the fact that Arabic words are formed by roots and word patterns,
and the use of affixes is rather limited and slightly different compared to other languages. It is
thus possible that the Arabic embedding model encodes the sub-words differently from the other
models. In this case the embedding and classification model would be strongly related, which
could result in a poor performance once applied to other languages in case of partial transfer.
As Maltese is also a Semitic language (ﬁarwooaL M), we could expect that using the Arabic
model on Maltese in partial transfer would be more efficient than the results with negative
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Figure 3.2: Accuracy for partial transfer of the models.

data indicate. However, Maltese’s morphology is different from other Semitic languages, where
it has been influenced by Sicilian, Italian, French and more lately English (, ) and
would have a “general tendency [...] to exhibit productive concatenation, rather than root-and-
pattern, word formation processes” (IPerea et alL |201ﬂ). Though it has some shared words with
Arabic and they appear to have a similar form of construction and pattern, the influence of
other languages can’t be ignored. Thus the fact that the Arabic model is not very efficient
with Maltese in partial transfer support the idea that the Arabic embedding model encodes the
morphology of words differently than most models. The issue could be as well that Maltese
encoding model might have encoded the morphology of Maltese words differently due to the
reasons mentioned above, which made the classifier unable to produce the expected results.

Surprisingly, the accuracy is not always of 0% for negative data when the models transfer to
Japanese. None of the Japanese characters are present in the dictionaries of the other models
so we could expect all the analogies to look like € : € :: € : € and thus all the said invalid ones to
be classified as valid.

Eventually Hungarian and Russian seem to be very efficient models in terms of transfer
learning. Because of the alphabet gap, the Russian model performs poorly on negative data
in full transfer but the results in partial transfer are above average. In average, Hungarian is
one of the languages closest to all the others in the family hierarchy, which may explain why
it transfers well. Russian however is not particularly close to the rest of the languages, further
experimentation and research on the morphology of Russian are needed to explain this result.
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Chapter 4

Conclusion and perspectives

This report provides a detailed summary of the work carried for the realization part of the
project. As discussed, different approaches are used to tackle each type of analogy. Though
many articles have adopted different approaches to solve semantic analogies including Textual
Analogy Parsing (TAP), Dependency Relations (DR), Vector Space Model (VSM) and learned
Neural Network analogy, we noticed that not many articles tried to tackle morphological analo-
gies, which are the focus of our project. Therefore, we worked on analyzing morphological
analogies by adapting a novel approach. Instead of using the already existing approaches to an-
alyze morphological analogies like Kolmogorov complexity and CopyCat, we developed a neural
approach to identify and complete morphological analogies.

We used two datasets which were introduced in section @ to import 11 languages. We
inspired our work from the approach of (Lim et all, 2019), where we successfully adapted their
neural network approach to solve morphological analogies thanks to our custom embedding
model. With our approach, we managed to achieve competitive results to those of (Murena et
all, 2020). Compared to the model of Lim et al., our CNN model is more flexible in many terms:

e it is able to carry over domain and language specificities from the training process;
e it is able to model any words even those never encountered in the training phase;

« it has strong potential to carry over models of analogy when using an adapted embedding
model as shown with our transfer experiments.

The word embedding model is a pillar for both tasks and improving it would most likely
induce better results for both classification and analogy solving. In this chapter we mention
some feasible directions that we will pursue to improve our models.

4.1 Improvement of the training settings

During the training of the embedding and classification models, we used some properties of
analogies to augment our dataset: given one valid analogies we generated in total 8 valid ones
and 3 invalid ones. We could apply the augmentation to the 3 invalid analogies and thereby
obtain 24 invalid analogies for 8 valid ones in the end. This could help improving the results for
negative data.

Moreover, we chose to train our models on 50,000 analogies but we have more available
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(Japanese aside). It could be interesting to see if more data would improve the results, in par-
ticular for languages with more different transformations and less word pairs per transformation.

Eventually, we did not dedicate an ID to the unknown characters when we trained the
models. They are thus embedded with vectors full of zeros and the model most likely ignores
them. Retraining the models with an additional ID for unknown characters could improve our
results, in particular for full transfer.

4.2 Towards a multilingual word embedding model?

We trained separately one model per language but we could imagine training a model on several
languages at the same time. The embedding model would learn more characters and more
patterns which could give it more robustness for transfer learning. The chosen languages should
be such that they use similar alphabets (we should not use Russian or Georgian with German
for instance) and the coverage of the union of their character dictionaries should be as high as
possible on languages using a similar alphabet. Eventually, choosing languages as far away as
possible from each other in terms of phylogeny could provide more difference in the morphology.
It is possible that such a model would also tackle the analogy solving task on several languages.

4.3 Discussion about ideographic languages

As we experimented with Japanese only, we do not have much material to make assumptions
on the usability of our approach for ideographic languages. However, we can suppose that the
size of the character dictionary plays a role in the quality of the embedding model.

We cannot explain why the classification task performs well while the analogy solving task
does not for Japanese. It could be related to the size of the dataset: classifying Japanese
analogies could require less learning data than solving them. However, we tested the analogy
solving task on Japanese with other models and the accuracy was close to 0. As we did not try
to transfer the models on other languages, we cannot say if it is related to the Japanese language
itself or if our regression models do not support transfer at all. Further experimentation in this
direction would be interesting.

4.4 Final remarks

Our early experiments on transferability highlighted the potential to transfer and reuse our
neural approach across domains. The results also confirmed our hypothesis that morphological
analogy models are transferable between similar languages (in terms of alphabet and morphol-
ogy). Further results on transferability could be used to measure morphological similarities
between languages.

However our embedding model is dependant on the characters encountered during the train-
ing. Its embedding layer encodes the unknown characters with zeros and we do not know if the
model then ignores them or is able to consider them as a part of the sub-words and morphemes.
This “black-box” effect is a drawback of the neural network approach and it would be interesting
to have a better understanding what our three models really do. Interpretability is indeed more
and more discussed and literature propose various methods which could help us understanding
the role of each feature (in our case characters) in the predicted results (Lundberg & Le¢, 2017)).

29



For instance Saliency Maps (Salehi, 2020) could help us highlighting which parts of the words
are the most used in practice by our embedding model as well as our classifier model and also
if the relation between the two pairs is more or less important than the relations between the
words of the pairs for the latter.

This project required knowledge in Neural Networks as we implemented the classification
model as well as the CNN embedding model. When we started the realisation part we had
almost none about this subject but our supervisor, Esteban Marquer taught us a lot. Several
courses during the semester enabled us to have a better understanding of Neural Networks
and this project was the opportunity to apply our knowledge on a real life problem. The
morphology course in the first semester gave us some basis to understand morphological analogies
and more specifically the different transformations words can undergo but more knowledge on
the similarities between languages could have helped us interpreting our results. This project was
also the opportunity for us to take part in the writing of a paper together with our supervisors,
Miguel Couceiro and Esteban Marquer, as well as Pierre-Alexandre Murena, one of the authors
of (Murena et al), 2020). This paper was submitted to the IEEE International Conference on
Data Science and Advanced Analytics 2021.
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Appendix A

Glossary

Acronym ‘ Full name

ACC
ACT
ADJ
CNN
DAT
DP
FEM
gen
1))
Lang.
LSTM
MRR
MSD
N
NN
num
PL
pos
SAT
SG
TAP
TOEFEL
VSM
UTF-8

Accusative

American College Test
Adjective

Convolutional neural network
Dative

Dependency Relation
Feminine

Gender

Identifier

Language

Long Short-Term Memory
Mean reciprocal rank
Morphosyntactic descriptions
Noun

Neural Network

Number

Plural

Part of speech

Standardised Assessment Test
Singular

Textual Analogy Parsing

Test of English as a Foreign Language
Vector Space Model

Unicode Transformation Format—8-bit

Table A.1: Acronyms used in the report.

Parameter | Explanation

Dpredictea | The vector produced by the analogy solver model
D josest The closest vector to Dpyedicted in the set of stored embeddings
k The extra portion of distance allowed to find the right vector in the solving task

Table A.2: Parameters used in the report.
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Appendix B

Statistics on the datasets

In this Appendix we propose different statistics on the datasets which show the (dis)similarities
between the languages we worked with.

Table @ presents the mean length (+ standard deviation) of the words of the training sets,
the number of different words, the number of different transformations, the mean number of
pairs of words per transformation (£ standard deviation) and the mean Levenshtein distance
(£ standard deviation).

Table @ provides a few comparative statistics between the training and test sets. It con-
tains the portion of new words in the test sets compared to the training sets, the number of
new transformations, the number of different characters in both sets and the number of new
characters in the test sets compared to the training sets.

Appendix B provides more information about the length of the words in the training and
test sets thanks to boxplots.

Figure @ provides more information about the number of words per transformation in the
training and test sets thanks to boxplots.

Figure @ provides more information about the Levenshtein distance in the training sets
thanks to boxplots (the values were similar for the test sets).

Figure @ indicates the coverage of the character dictionaries of the training sets on the
character dictionaries of the test sets. For instance a coverage of 100% indicates that all the
characters of the test set are present in the training set while a coverage of 0% indicates that
all the characters of the test set are new. The last column indicates the mean coverage of each
training set. The results presented on Figure @ are related to those of full transfer for the
classification task as the embedding models know only the characters present in the set they
were trained on.
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Table B.1: Statistics on the word and word pairs of the training sets

Word Number of Number of different ~ Number of pairs per  Levenshtein

length different words transformations transformation distance
Arabic 8.242.2 16,002 226 65.14+22.0 3.84+1.6
Finnish 11.0+3.6 37,857 95 247.84191.4 3.4+1.6
Georgian 8.14+2.2 19,722 90 192.84385.0 1.8+1.2
German 10.443.5 19,955 99 153.9£75.9 2.2+1.3
Hungarian 8.7+3.0 3,452 82 26.84+28.5 3.6+1.3
Japanese 5.0£3.2 1,573 20 791.3480.6 6.2+1.6
Maltese 9.4+3.6 3,428 1507 0.6+0.9 7.0+2.3
Navajo 7.7+2.1 622 42 9.9410.0 3.842.1
Russian 8.84+2.8 29,871 83 268.1+£286.5 1.8+1.1
Spanish 8.942.3 28,230 83 278.9£192.2 2.24+1.3
Turkish 8.8+3.6 2,686 167 8.54+5.9 5.3+2.3

Table B.2: Statistics about the test sets compared to the training sets.

Portion of =~ Number of new  Number of characters Number of Number of new
new words  transformations in the training set characters in the characters
test set

Arabic 86,81% 6 43 43 0
Finnish 84,02% 0 32 30 1
Georgian 83,5% 0 34 34 0
German 77,22% 2 58 57 0
Hungarian 65,64% 0 33 33 0
Japanese 0% 0 632 632 0
Maltese 70,54% 105 30 30 1
Navajo 60,61% 0 30 30 0
Russian 78,53% 2 34 35 1
Spanish 87,03% 0 33 33 0
Turkish 58,90% 0 35 34 0
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Figure B.1: Lengths of the words.
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(b) Number of word pairs per transformation in the test sets.

Figure B.2: Number of word pairs per transformation.
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Figure B.3: Levenshtein distance between the words of the training set’s pairs.
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Appendix C

Examples for the classification and
analogy solving tasks

In this appendix we propose examples in each language that we worked on in this project.
Appendix is dedicated to the classification task while Appendix presents examples for
solving analogies.

For the classification examples, we provide five examples per language:

A valid one classified as valid by our model (true positive);

A valid one classified as invalid by our model (false negative);

An invalid one classified as invalid by our model (true negative);

An invalid one classified as valid by our model (false positive);

A random one (thus invalid) classified as invalid by our model.
For the solving task, we propose three examples per language:

e One where the right vector was the closest to the vector produced by our model;
¢ One where the right vector was found but was not the closest;

e One where the right vector was not found.
We display the words corresponding to the vectors close to the predicted one up to a 2%-extended

distance. For the examples where the right vector was not found, it was not found with & = 5%
either.

40



C.1 Classification task

‘ Expected ‘ Result ‘ Analogy Form
valid valid | naffaqa:naffagna::dammama:dammamnaa A:B::C:D
Q valid invalid | bayya“una:al-bayya‘u::nawarun:an-nawariyyu B:A::D:C
'_CSS invalid | invalid | dammama:naffagna::naffaga:dammamna C:B::A:D
< invalid valid | al-°’amtiatu:al-mata‘u::al-qimatu:al-giyamu B:A::C:D
invalid | invalid | jihadiyyayni:al-kanadiqu::tusarraha:mustabih Random
valid valid | lenkkitossut:lenkkitossuilla::kananaivo:kananaivoilla A:B::C:D
< valid invalid | asukastiheys:asukastiheydeksi::aamutuima:aamutuimaksi A:B::C:D
g invalid | invalid | kananaivo:lenkkitossuilla::lenkkitossut:kananaivoilla C:B::A:D
= invalid valid | raanin:raani::haartatdkki:haartatdkin B:A::C:D
invalid | invalid | juurimme:borderterrierin::pedannee:monstrumeilta Random
valid valid | 0bgmobgmo:0bgmolgembm::3MmmgEe®o:3MhmmgHodbm A:B:C:D
_% valid invalid | 0bggmolgmom:0bgmolgebm::06009L3ds:0b6YLbm A:B::C:D
%D invalid | invalid | 06g@0bgebm:0bgmobgmo::3OMmgEe®0:3OMMmyBHombm B:A::C:D
8 invalid valid | Lombm:Lombm::obrM®GYMOo:brm®dgymmdo A:A::C:D
invalid | invalid | 3m@000ybo:B303000::LoEM00:HMOR0060 Random
valid valid | extrovertiert:extrovertiertere::angelsichsisch:angelséichsischere | A:B::C:D
g valid invalid | entgehen:entgingen::schwéchen:schwéchten A:B::C:D
é invalid | invalid | extrovertiertere:extrovertiert::angelsiachsisch:angelsichsischere | B:A::C:D
(?5 invalid valid | unkommunikative:unkommunikativ::abgestrahlt:abgestrahlte B:A::C:D
invalid | invalid | kultivierte:Wemfall::barbusigen:verwirklicht Random
- valid valid | felejt:felejtenétek::elvét:elvétenétek A:B::C:D
= valid invalid | kert:kertre::cél:célra A:B::C:D
&% | invalid | invalid | felejt:felejt::elvét:elvétenétek A:A::C:D
5 invalid valid | felfog:felejtenétek::felejt:felfognatok A:D::C:B
= invalid | invalid | nyissak:kezdeményezel::lokalizalhat:visszhangoztok Random
valid valid | R RIS /0 2 5UFAD & < &gk 55 // 20T D x < | AB=CD
2 valid invalid | BED: KEED /BBB D 8K KRR/ 720WE S A% < A:B:C:D
g invalid | invalid | %58 KRB /O x 5FAD & <o R 355/ 20T D £ < | A:D:C:B
= | invalid valid | FiHIAK: Fie /b Kk bR /b D A:D:C:B
invalid | invalid | EEH/Uo L%: RV 2950 55 Random

Table C.1: First set of examples for the classification task.
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Expected | Result ‘ Analogy ‘ Form

valid valid | twassal:jitwassluhulu::tbelles:jitbellsuhulu A:B:C:D

% valid invalid | sempel:ssempel::ttertaq:tittertaq A:B::C:D
= invalid | invalid | twassal:twassal::tbelles:jitbellsuhulu A:A::C:D
= invalid valid | llizzem:lizzem::ballas:nballas B:A::C:D
invalid | invalid | tintilefhomlhiex:tnaqqithielna::berrinnihilhomx:jithallaghomlniex | Random

valid valid | yiijjijh:deijjj ::yi éés:daaz eez A:B::C:D

o valid invalid | dajiijjii :deijij ::yiyiitdzid:dayiitdzid A:B::C:D
% invalid | invalid | dasiilghal:yiyiithat::ch {it 4:ch idaniil a B:A:C:D
Z invalid valid | haidiz66h:daahshéoh::yishé6h:hadadohsdéoh A:D::C:B
invalid | invalid | woozhizh :akétal ::hashohkeeh:ni siidzo Random

valid valid | moBEepPUMBOCTD:MOBEPUYHUBOCTSIX: :KPOBL:KPOBSIXD A:B::C:D

= valid invalid | BLIGMBAThL:BEHIOUTE: :pA3/IMYATh: PA3IUYUTD A:B::C:D
7 invalid invalid | moBepUYMBOCTSIX:MOBEPUMBOCTD: :CepPTUDHUKAT:CepTUDHUKATAX B:A::C:D
é invalid valid | moxamy#Tech:MOXKAIOBATHCS: :U3TOTOBUTh:U3TOTOBbTE B:A::C:D
invalid | invalid | HaTHCKY:IPUAATOYHBIMHY: :HACTPOWII: CIIKCHIBAJIA Random

valid valid | gobernar:gobernabais::empapelar:empapelabais A:B::C:D

= valid invalid | asolear:asoleando::desbandar:debandando A:B:C:D
.g invalid invalid | gobernabais:gobernar::empapelar:empapelabais B:A::C:D
& | invalid valid | zarpe:zarpar::coprotagonizar:coprotagonice B:A:C:D
invalid invalid | zocatos:calibraré::domicilios:pizarrines Random

valid valid | yumurtalik:yumurtahiginiza::kirig:kiriginize A:B::C:D

= valid invalid | deney:deney::garaj:garaj A:A::C:C
% invalid | invalid | kirisi:yumurtaliginiza::yumurtaliklari:kiriginize C:B::A:D
F—: invalid valid | yumurtalik:yumurtalik::kirig:kiriginize A:A::C:D
invalid | invalid | dedikoducularin:emmezler::kiblesi:genclikte Random

Table C.2: Second set of examples for the classification task.
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C.2 Solving analogies

‘ Analogical equation Expected Rank
al-°abzanu:al->abzanayni::az-za‘imu::? az-za“imayni 1
Results

:(7 az-za°imayni, al-ma‘izayni, al-ma‘zatayni, al-ma‘“zatayni, al-qirmiziyyayni,
k=2%
al-quzimiyyayni, al-qamisayni, al-qirmiziyyatayni, al-quzimiyyatayni

O
£
£ | al->abzanayni:al->abzanu::az-za°tmayni::? az-za‘imu 4
< Results ¢ —ecs —c: o= —cs . ..
ﬁ al-ma‘zatu, al-ma‘izatu, al-ma‘izu, az-za“imu, al-mawac‘izu, al-qirmiziyyatu,
al-maclumu
az-za’Tmayni:az-za‘imu::al->abzanayni::? al-’abzanu Not found
% al-juzay®u, al-°iblisu, al-"atlatu, al-baksisu, al-juz®u
=2%
kaksiavioisuus:kaksiavioisuuksille::luotiliivi::? luotiliiveille 1
% luotiliiveille, luottaisitte, luokille, luotitte, lusikoitte
=2%
: . .
g pojo:hemmo::pojoa::? hemmoa 3
E Resulls hemmoilta, hemmoista, hemmoa
k=2%
péitset:péaitset::perfektit::? perfekti Not found
% perfektit, perhostelevat, perkussionistit, perhostelet, perennoisit
3086030%30:3086080¥30::HMoJH0E0::? BModBmbdo 1
L2 pGodibmto, Hadtoso, 6Hods0
g
20 | 30e03000LE0:3063060LEH0L::3oFMomE0Bdo::? 3oB®omE0Bdol 2
—
é‘% % 350G00B0EAL, 36860aB0BI0L, 358M0MEB0m, 366M0sHIol
=2%

AP YM::300YBHY3Pdo::? 3069pByY3geo  Not found
iis:j;s> 3069693930, J009BY3AM, 3069 Y300

Table C.3: First set of examples for the solving task.
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ﬁ nqafel, tqacéat, xaqqaf, tlaqqat

‘ Analogical equation Expected Rank
toxisch:populér::toxischere::? populdrere 1
Results .. ..
ﬁ populirere, populidre
=2%
=]
g ausgestorben:ausgestorbenes::mitverantwortlich::? mitverantwortliches 2
g’ % mitverantwortlicher, mitverantwortliches, mitverantwortliche
applizierten:applizieren::versiahen::? versehen Not found
Results . . .
ﬁ versdhen, verschlingen, verschieben
bizonyit:taszit::bizonyitsak::? taszitsak 1
% taszitsak, taszitottuk, taszitok, taszitsatok
g
= felfrissit:felfrissitstink::dof::? dofjiink 2
5 % défnék, dofjiink, dofnénk, dofjiik, doftiink
=2%
T | adminisztral:adminisztraltatok: kivisz::? kivittetek Not found
Results R .. .
ﬁ kiviszitek, kivissziik
=2%
W) DENANER ) LTS R HESR? > 1
ﬁe_s:zlts> PES, THIE, WX, T, BUR, %A, BB Bk, R, £8, Bk
o5}
n
% B3 /b0D5: FFE5:5 /857 s 4
S| Al B¥ 3 K5, MR s, g, s
= =27
MED/BEES: ity AT/ AT :? ~h 3 Not found
Ll mE s A X, BB, BN, Bh s, Bh, #h s, HBns
tliegheb:tleghibniehielek::tliegheb::? tleghibniehielek 1
%“Z% tleghibniehielek, tghabbinichielek, nitlieghbuhielek, thekbkithilhiex
=2%
?
& | tlewnitilkomx:tlewwen::zzeghblitilkomx::? zzeghber 2
§ Results, tahbiza, zzeghber, zzambar
k=2%
jigtirruhulu:jitqaxilfuhulu::igtar::? tqaxlef Not found
Results

Table C.4: Second set of examples for the solving task.

44



Analogical equation Expected Rank

Navajo

ach®oozhlaa’:nich?oozhlaa?::ach?ii®::? nich?i{i® 1
Results

p nich?ii®, nihich®ii®, yinichii®
=0.02

nich®oozhlaa’:ach?oozhlaa?::nich®ii®::? ach®ii® 2

Results ’’ ’s . ,s
hach?ii®, ach®ii®, shich?ii®
k=0.02

ataa®:alatsiin::nitaa®::? nilatsiin Not found
Results 14422 s 19: .
?:> nihilatsiin, nit{’in, nanimaas

=0.02

Russian

OydeT:0ydheTax::apXuMaHOPHUT::? apXuMaHAPUTaX 1
Results

apxXuMaHIPHUTaX

k=0.02 P p
apXUMaHOPUT:apXUMaHapUTax::0ydeT::? oyderax 2
Results

oydetos, oOydeTax, Oyder
003 yob yob yob

0OHOBJIEHHE : ITaPOXO: :00HOBIICHHM: : ? IapoxomoB Not found

Results
e HapOXOJI
k=0.02

Spanish

repavimentar:repavimentard::encantar::? encantara 1

Results L, . , .
?——=:> encantara, encestara, encriptara, encintara
=0.02

bibliografias:bibliografia::turones::? turén 4
Results

p turbaren, turnaban, turnan, turén, turban
=0.02

decodificasemos:decodificar::empalmasemos::? empalmarse Not found

Results .
W empapelar, empalar, empollar, ampollar, empolvar, emplear, impeler, emplazar,

espolear, empalagar

Turkish

kasik:kasiklarinda::kasik::? kasiklarinda 1

Result
=%, kasiklarinda, kaslarinda

k=0.02

mumya:mumyalarimizdan::film::? filmlerimizden 2

% filizleri, filmlerimizden, filizlerinde, filizlerinden, filmlerimden, filmlerinde,

filmlerinden, filozoflarimizi, filizlerinizden, fillerdiniz, fitillerimizin, filmlerini, fizik¢ilerimizin,
fillerinde, fillerini

filmlerimizden:film::mumyalarimizdan::? mumya Not found

Result e 17s i 17s
% miiellif, miellifi
=0.02

Table C.5: Third set of examples for the solving task.
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Appendix D

Analogy solving k-extended results

In this appendix, we present some statistics about the k-extended evaluation of the solving task.

Table @ contains the number of analogies for which we found more than one vector in
the k-extended range. We also recall the total number of analogies used for the evaluation as a
comparison.

Figure Ell shows the rank of the right vector among the found ones in the 5%-extended
range through boxplots. We chose to keep our y-axis in [0, 150] for visibility reasons, there are
thus outliers which do not appear on the chart.

Table present statistics about the sets and ranks of found vectors for the solving task
with Cosine similarity. It contains the MRR, the mean of the ranks when the rank is greater
than one (+ standard deviation), the portion of sets of found vectors of length greater than one
and the mean size of the sets (+ standard deviation).

Table @ present the same statistics but with Euclidean distance.
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Cosine similarity Euclidean distance Total number
k=0 k=001 k=002 k=005k=0 k=001 k=0.02 k=0.05| of analogies
Arabic 1 269,116 360,932 399,882 0 48,553 89,706 182,878 400,000
Finnish 2 237,609 350,193 399,904 0 25,320 47,542 102,442 400,000
Georgian 0 79,355 180,971 385,976 0 4,415 8,610 20,666 400,000
German 0 86,346 185,771 385,026 0 8,234 15,762 36,542 400,000
Hungarian 0 185,849 253,444 374,526 0 25,706 49,064 105,364 400,000
Japanese 3 57,525 62,522 63,384 0 13,288 23,568 43,085 63,384
Maltese 0 13,374 19,268 25,188 0 1,708 3,164 6,432 29,656
Navajo 0 16,508 26,164 36,808 0 3,682 6,982 14,572 38,744
Russian 3 92,499 171,110 341,368 0 16,788 32,640 73,566 400,000
Spanish 8 130,858 229,238 377,306 6 11,836 22,656 51,100 400,000
Turkish 0 32,370 54,742 84,412 0 5,768 10,778 23,752 90,880

Table D.1: Number of analogies for which we found more than one vector in the k-extended
range.
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Figure D.1: Rank of the right vector among the found ones in the 5%-extended range.
For visibility reasons, we did not display all the outliers (they reach 3601 for Maltese).
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MRR MR if rank > 1
k = 0.01 k = 0.02 k = 0.05 k = 0.01 k = 0.02 k = 0.05
Arabic 0.60 0.63 0.64 29+ 1.6 4.4 4+ 4.3 12.2 + 28.4
Finnish 0.80 0.81 0.81 3.1+£20 4.6 £ 5.2 9.8 + 26.2
Georgian 0.95 0.95 0.96 2.1+0.5 2.4+ 1.2 4.2 £ 8.2
German 0.90 0.91 0.92 2.3 £0.7 2.7+ 1.8 5.3 £ 12.1
Hungarian 0.76 0.77 0.78 29+ 14 344+ 21 4.1 + 4.0
Japanese 0.28 0.30 0.30 32.3 + 53.8 384 + 77.3 39.7 £ 72.9
Maltese 0.79 0.79 0.80 4.6 £ 6.2 8.0+ 214 17.8 +£ 124.5
Navajo 0.51 0.54 0.58 2.4 +£09 3.0£ 1.7 5.3 £ 74
Russian 0.73 0.76 0.80 22+05 2.4+ 1.0 3.3 +4.1
Spanish 0.92 0.92 0.92 25+ 1.1 3.0£27 5.3 £ 14.2
Turkish 0.75 0.77 0.79 2.3 +£0.8 2.7+ 14 4.4 £ 5.7
Portion of sets of length > 1 Mean size of the sets
k = 0.01 k = 0.02 k = 0.05 k =0.01 k = 0.02 k = 0.05
Arabic 67.28% 90.23% 99.97% 39+25 8.9 £ 84 100.4 4+ 111.2
Finnish 59.40% 87.55% 99.98% 4.4 £+ 34 11.1 £ 11.5 153.7 + 137.9
Georgian 19.84% 45.24% 96.49% 2.3 +£0.7 2.8 £ 1.7 12.1 £ 134
German 21.59% 46.44% 96.26% 25+ 1.1 3.3 £28 16.0 £ 25.6
Hungarian|  46.46% 63.36% 93.63% 3.7 £2.0 5.4 £ 3.6 14.0 £ 20.0
Japanese 90.76% 98.64% 100.00% 136.1 4+ 140.6  329.1 £ 332.7  461.8 &+ 362.3
Maltese 45.10% 64.97% 84.93% 8.0 £ 11.9 52.2 £91.9 1376.4 +
1785.4
Navajo 42.61% 67.53% 95.00% 2.7+ 1.2 3.9+ 28 13.7 £ 16.8
Russian 23.12% 42.78% 85.34% 2.3+ 0.8 2.8+ 1.6 72 +97
Spanish 32.71% 57.31% 94.33% 3.0+ 17 5.0 £5.0 34.5 4+ 48.7
Turkish 35.62% 60.24% 92.88% 2.6 £ 1.1 3.7+ 27 18.2 £ 25.4

Table D.2: Results of the k-extended evaluation for analogical equation solving with Cosine

similarity
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MRR MR if rank > 1

k = 0.01 k = 0.02 k = 0.05 k = 0.01 k = 0.02 k = 0.05

Arabic 0.53 0.54 0.58 2.14+0.3 2.240.5 2.6£1.1
Finnish 0.73 0.74 0.76 2.14+0.3 2.140.4 2.440.9
Georgian 0.94 0.94 0.94 2.04+0.1 2.0£0.2 2.14+0.5
German 0.88 0.88 0.89 2.04+0.2 2.14+0.3 2.240.7
Hungarian 0.69 0.70 0.72 2.1£0.3 2.1£04 2.3+0.7
Japanese 0.18 0.19 0.21 2.240.5 2.4+0.7 3.24+1.7
Maltese 0.77 0.78 0.79 2.140.4 2.240.6 2.6+1.2
Navajo 0.49 0.50 0.52 2.14+0.3 2.2+0.4 2.5+1.0
Russian 0.70 0.70 0.72 2.04+0.2 2.140.3 2.240.7
Spanish 0.88 0.89 0.90 2.040.2 2.14+0.3 2.240.6
Turkish 0.69 0.69 0.72 2.14+0.2 2.14£0.4 2.34+0.8

Portion of sets of length > 1 Mean size of the sets

k = 0.01 k = 0.02 = 0.05 = 0.01 k = 0.02 k = 0.05

Arabic 12.14% 22.43% 45.72% 2.240.4 2.3£0.7 3.14+1.7
Finnish 6.33% 11.89% 25.61% 2.1+0.4 2.240.6 2.7+1.3
Georgian 1.10% 2.15% 5.17% 2.04+0.2 2.140.3 2.240.8
German 2.06% 3.94% 9.14% 2.140.3 2.14+0.5 24+1.1
Hungarian 6.43% 12.27% 26.34% 2.1+0.3 2.240.5 2.6+1.0
Japanese 20.96% 37.18% 67.97% 2.340.6 2.6+0.9 4.0+2.4
Maltese 5.76% 10.67% 21.69% 2.240.5 2.440.8 3.24+1.9
Navajo 9.50% 18.02% 37.61% 2.140.3 2.34+0.6 2.841.4
Russian 4.20% 8.16% 18.39% 2.1+0.3 2.240.5 2.5+1.1
Spanish 2.96% 5.66% 12.78% 2.14+0.3 2.240.5 24+41.1
Turkish 6.35% 11.86% 26.14% 2.1+0.3 2.240.6 2.6+1.2

Table D.3: Results of the k-extended evaluation for analogical equation solving with Euclidean

distance.
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