TOWARDS AUTOMATIC VALIDATION OF PRONUNCIATION VARIANTS FOR SPEECH RECOGNITION AND SYNTHESIS Colleen BEAUMARD, Nicolas PETITJEAN, Tom WYSOCKI Supervisor: Denis JOUVET

Problematic

Speech synthesis and recognition have become important challenges for the future. They allow us to use voice commands on devices, but also to transcribe speech into text.

Objective: validation of word pronunciation variants by \rightarrow alignment rules, inconclusive results, research of grapheme-to-phoneme conversion models to improve word prediction performance.

Upside down

English pronunciation corpus

French pronunciation corpus

CMUdict - 134 304 words with their phonetic transcription (ARPABET symbols):

CATEGORIZE	K AE1 T AHØ G ERØ AY2 Z	
CATEGORIZED	K AE1 T AHØ G ERØ AY2 Z D	
CATEGORIZES	K AE1 T AHØ G ERØ AY2 Z IHØ Z	
CATEGORIZING	K AE1 T AHØ G ERØ AY2 Z IHØ NO	G
CATEGORY	K AE1 T AHØ G AO2 R IYØ	
CATELLI	K AHØ T EH1 L IYØ	
CATENA	K AHØ T IY1 N AHØ	
CATER	K EY1 T ERØ	
CATERED	K EY1 T ERØ D	
CATERER	K EY1 T ERØ ERØ	

0 : no stress - 1 : primary stress - 2 : secondary stress

BDLex - 337 550 words with their phonetic transcription (in SAMPA):

Right side

ballottement	bal0/t@ma~	tnemettollab	a∼ m@t0/lab
ballottements	b a l O∕ t @ m a~	stnemettollab	a~ m@t0/lab
balsa	balza	aslab	azlab
balsas	balza	saslab	azlab
bambochade	ba∼bO/Sad	edahcobmab	d a S 0/ b a~ b
bambochades	ba∼bO/Sad	sedahcobmab	daSO/ba~b
bambocheur	b a~ b O/ S 9 R	ruehcobmab	R 9 S 0/ b a~ b
bambocheurs	b a~ b O/ S 9 R	sruehcobmab	R 9 S 0/ b a~ b
bambocheuse	b a∼ b 0/ S 2 z	esuehcobmab	z 2 S 0/ b a~ b
bambocheuses	b a~ b 0/ S 2 z	sesuehcobmab	z 2 S 0/ b a~ b

Processing of the corpus

Train Development Test 15% 15% 70%

For the English lexicon, *test* (with stress) and *test bis* (without stress)

For the French lexicon, each file in right side and upside down versions.

For the models of the **neural network** approach and the **statistical** approach, we evaluate the prediction performances of the files with 2 scores: WER = Word Error Rate, the error rate per word and PER = Phoneme Error Rate, the error rate per phoneme.

Alignment rule approach

Alignment of graphemes and phonemes using predefined rules. If insufficient, add new rules: columbarium $\rightarrow k O/l o \sim b a R j O m$ \rightarrow \sim um breitschwanz \rightarrow b R a j t S v a t s $z \rightarrow ts$ fuel \rightarrow f j u l ue \rightarrow ju

Résultats

Do not detect mispronunciations \rightarrow even if incorrect predictions, alignment possible: abstin abstinent

Neural network approach

It is given a sequence of letters as input and the network provides a sequence of phonemes as output.

Software : OpenNMT

- Free software for neural networks;
- Use of a YAML configuration file (where to find the files needed for training).

Statistical approach

Statistical method for predicting a phoneme from a sequence of letters.

$\begin{array}{l} \text{``mixing''} \\ [m1ks10] \end{array} =$	m [m]	i [I]	x [ks]	i [I]	n [ŋ]	g
--	----------	----------	-----------	----------	----------	---

Software : Sequitur

• Each element is linked to a sequence of letters and a sequence of phonemes, sequences that allow the reconstruction of the word with its pronunciation \rightarrow Sequence Joined;

• Based on a grapheme-phoneme alignment.

English and French lexicon results

English Lexicon

Models combination results (French lexicon)

Combination of the models

Modele	PER	WER
With consideration of stress	10.93%	41.58%
Without taking stress into consideration	8.71%	36.86%

French Lexicon

Modele	PER	WER
OpenNMT right side	0.59%	3.05%
OpenNMT upside down	0.76%	4.24%
Sequitur right side	0.53%	3.15%
Sequitur upside dow	0.50%	2.92%

	Number of identical	Number of	Proportion of	
	predictions among	predictions out	configurations	
	the models	of 51612	of a total in percent	
	4	48 165	93.32%	
	3-1	2098	4.06%	
	2-2	917	1.78%	
	2-1-1	424	0.82%	
	1-1-1-1	8	0.02%	
Examples:		1		
3 - 1 : a	blytjo∼ ably	sjo∼ ably	sjo∼ ablysjo	
2 - 1 - 1 : a	\sim m 9 l a m 9	$1 a \sim m$	21 a~ m 21	

Conclusion

• Rules not sufficient to validate pronunciation variants;

• Neural network and statistical models perform well, slightly better when combined: $(\mathbf{PER} : 0.47\% \text{ and } \mathbf{WER} : 2.75\%).$